Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Methods ; 89: 13-21, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25782628

RESUMO

With the development of soft ionization techniques such as electrospray ionization (ESI), mass spectrometry (MS) has found widespread application in structural biology. The ability to transfer large biomolecular complexes intact into the gas-phase, combined with the low sample consumption and high sensitivity of MS, has made ESI-MS a method of choice for the characterization of macromolecules. This paper describes the application of MS to study large non-covalent complexes. We categorize the available techniques in two groups. First, solution-based techniques in which the biomolecules are labeled in solution and subsequently characterized by MS. Three MS-based techniques are discussed, namely hydroxyl radical footprinting, cross-linking and hydrogen/deuterium exchange (HDX) MS. In the second group, MS-based techniques to probe intact biomolecules in the gas-phase, e.g. side-chain microsolvation, HDX and ion mobility spectrometry are discussed. Together, the approaches place MS as a powerful methodology for an ever growing plethora of structural applications.


Assuntos
Substâncias Macromoleculares/química , Espectrometria de Massas/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Reagentes de Ligações Cruzadas/química , Medição da Troca de Deutério/métodos , Humanos , Substâncias Macromoleculares/análise , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
2.
Eukaryot Cell ; 14(10): 1043-53, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26275879

RESUMO

Coccidioides immitis and Coccidioides posadasii are soil-dwelling fungi and the causative agents of coccidioidomycosis, a mycosis endemic to certain semiarid regions in the Americas. The most common route of infection is by inhalation of airborne Coccidioides arthroconidia. Once a susceptible host inhales the conidia, a transition to mature endosporulated spherules can occur within the first 5 days of infection. For this study, we examined the host response in a murine model of coccidioidomycosis during a time period of infection that has not been well characterized. We collected lung tissue and bronchoalveolar lavage fluid (BALF) from BALB/c mice that were infected with a C. immitis pure strain, a C. immitis hybrid strain, or a C. posadasii strain as well as uninfected mice. We compared the host responses to the Coccidioides strains used in this study by assessing the level of transcription of selected cytokine genes in lung tissues and characterized host and fungal proteins present in BALF. Host response varied depending on the Coccidioides strain that was used and did not appear to be overly robust. This study provides a foundation to begin to dissect the host immune response early in infection, to detect abundant Coccidioides proteins, and to develop diagnostics that target these early time points of infection.


Assuntos
Coccidioides/imunologia , Coccidioides/isolamento & purificação , Coccidioidomicose/imunologia , Citocinas/genética , Imunidade Inata/imunologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/microbiologia , Coccidioides/genética , Coccidioidomicose/microbiologia , Feminino , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/genética , Esporos Fúngicos/imunologia
3.
Phys Chem Chem Phys ; 17(5): 3607-16, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25553956

RESUMO

A pulse of D2O vapour on the order of microseconds is allowed to react with the +6 to +9 charge states of ubiquitin confined in a linear ion trap (LIT). Two envelopes of peaks are detected for the ions of ubiquitin, corresponding to the ions that exchange more quickly and more slowly. The deuterium uptake of the protonated sites on ubiquitin ions accounts for the ion population with the fast exchange. The hydrogen/deuterium exchange (HDX) kinetics of ubiquitin ions trapped in the LIT for 200 ms showed comparable structural transitions to those trapped for 300 ms. When ions are trapped for longer, i.e. up to 2000 ms, mainly the slow exchanging ion population is detected. In all experiments the +7 ions exchange the most, suggesting a short distance between the surface protonated sites and nearby charged sites, and concomitantly high accessibility of surface protonated sites towards D2O. The +6 ions are more compact than the +7 ions but have one fewer protonated site, therefore fewer surface availabilities for D2O attack. The data suggest that the +6 ions keep most of their solution-phase contacts intact while the hydrophobic core is slightly interrupted in the +7 ions, possibly due to the exposure of charged His68 that is normally buried in the hydrophobic pocket. The +8 and +9 ions have more protonated sites but are less compact than the +7 ions because of Coulombic repulsion, resulting in a larger distance between the protonated sites and the basic sites. The data indicate that the HDX mechanism of ions with the slower exchange corresponding to the second envelope of peaks is primarily governed via a relay mechanism. The results suggest that the pulsed HDX MS method is sampling a population of ubiquitin ions with a similar backbone fold to the solution.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Ubiquitina/química , Deutério/química , Medição da Troca de Deutério , Hidrogênio/química , Íons/química , Fatores de Tempo
4.
J Am Soc Mass Spectrom ; 33(9): 1723-1732, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35948044

RESUMO

We report on the dissociation of singly protonated peptides by electrons using electron-activated dissociation (EAD), which comprises electron impact excitation of ions from organics (EIEIO), electronic-excitation dissociation (EED), and electron ionization dissociation (EIoD). Various singly protonated peptides were dissociated using a recently reported fast EAD device. The dissociation can be induced through two pathways: (i) vibrational dissociation similar to collision-activated dissociation (CAD, or collision-induced dissociation, CID) by relaxation from a molecular electronic excited state to high vibrational states; and (ii) radical-induced dissociation where molecular electronic excitation is followed by homolytic cleavage. EAD is complementary to CAD as additional molecular information can be obtained; e.g., fragile PTM moieties, such as glycosylation and sulfation, can be localized. Simultaneously, the energetic production of radical z• fragments enables Leu and Ile discrimination, like in a hot ECD process. Using the fast EAD device, LC-EIEIO-time-of-flight mass spectrometry was applied to a tryptic monoclonal antibody digest containing short singly protonated peptides.


Assuntos
Elétrons , Peptídeos , Íons/química , Espectrometria de Massas/métodos , Peptídeos/química , Processamento de Proteína Pós-Traducional
5.
J Phys Chem A ; 114(10): 3449-56, 2010 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-20163169

RESUMO

Complexes between adenine and the alkali metal ions Li(+), Na(+), K(+), and Cs(+) have been investigated by infrared multiple photon dissociation (IRMPD) spectroscopy between 2800 and 3900 cm(-1), as have some singly hydrated complexes. The IRMPD spectra clearly show the N-H stretching and the NH(2) symmetric and asymmetric stretching vibrations of adenine; and for the solvated ions, the O-H stretching vibrations are observed. These experimental spectra were compared with those for a variety of possible structures, including both A9 (A9 refers to the tautomer where hydrogen is on the nitrogen in position 9 of adenine, see Scheme 1) and A7 adenine tautomers, computed using B3-LYP/6-31+G(d,p). By comparing the experimental and the simulated spectra it is possible to rule out various structures and to further assign structures to the species probed in these experiments. Single-point calculations on the B3-LYP/6-31+G(d,p) geometries have been performed at MP2/6-311++G(2d, p) to obtain good estimates of the relative thermochemistries for the different structures. In all cases the computed IR spectrum for the lowest energy structure is consistent with the experimental IRMPD spectrum, but in some cases structural assignment cannot be confirmed based solely upon comparison with the experimental spectra so computed thermochemistries can be used to rule out high-energy structures. On the basis of the IRMPD spectra and the energy calculations, all adenine-M(+) and adenine-M(+)-H(2)O are concluded to be composed of the A7 tautomer of adenine, which is bound to the cations in a bidentate fashion through N3 and N9 (see Scheme 1 for numbering convention). For the hydrated ions water binds directly to the metal ion through oxygen, as would be expected since the metal contains most positive charge density. For the hydrated lithium cation-bound adenine dimer, the water molecule is concluded to be hydrogen bonded to a free basic site of one of the adenine monomers, which is also bound to the lithium cation. Experimental and theoretical results on adenine-Li(+)-H(2)O suggest that the electrosprayed adenine-Li(+) resembles the lowest-energy solution phase ion rather than the lowest-energy gas-phase ion, which is the imine form.


Assuntos
Adenina/química , Elétrons , Metais Alcalinos/química , Compostos Organometálicos/química , Gases/química , Modelos Moleculares , Conformação Molecular , Fótons , Teoria Quântica , Espectrofotometria Infravermelho
6.
J Phys Chem A ; 113(5): 824-32, 2009 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19175333

RESUMO

The interaction of lithium ions with two pyrimidine nucleobases, thymine and uracil, as well as the solvation of various complexes by one and two water molecules, has been studied in the gas phase. IRMPD spectra are reported for each of B-Li(+)-(H(2)O)(n) (n = 1-2) and B(2)-Li-(H(2)O)(m) (m = 0-1) for B = thymine, uracil over the 2500-4000 cm(-1) region. Calculations were performed using the B3LYP density functional in conjunction with the 6-31+G(d,p) basis set to model the vibrational spectra as well as MP2/6-311++G(2d,p) theory to model the thermochemistry of potential structures. Experimental and theoretical results were used in combination to determine structures of each complex, which are reported here. The lithium cation in all complexes was found to bond to the O4 oxygen in both thymine and uracil, and the first two water molecules of solvation were found to bond to Li(+). The experimental spectra obtained for BLi(+)(H(2)O)(n) (n = 1-2) and B(2)Li(+) for thymine and uracil clearly resemble one another, suggesting similar structural features in terms of bonding between the base and Li(+), as well as for solvation. This was confirmed through theoretical work. The addition of water to the lithium ion-bound DNA base dimers has been shown to induce a significant change in structure of the dimer to a hydrogen-bonded system similar to base pairing in the Watson-Crick model of DNA.


Assuntos
Lítio/química , Espectrofotometria Infravermelho/métodos , Timina/química , Uracila/química , Ligação de Hidrogênio , Estrutura Molecular , Termodinâmica , Água/química
7.
J Phys Chem A ; 113(28): 8099-107, 2009 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-19548662

RESUMO

The infrared multiple photon dissociation (IRMPD) spectrum of electrosprayed adenine proton-bound dimers were recorded in the gas-phase inside the cell of a Fourier transform ion cyclotron resonance spectrometer coupled to a tunable optical parametric oscillator/amplifier infrared laser. While gas-phase B3LYP/6-31+G(d,p) calculations indicate that the four lowest isomers are essentially isoenergetic, comparisons of the experimental and predicted IR spectra suggest that only two of the four isomers are observed in the experiment. However, computed solvation effects, as modeled using both a polarizable continuum model and microsolvation with five explicit water molecules, preferentially stabilize these two observed isomers, consistent with the interpretation of the IRMPD spectra. This work shows that for these small species the solvent-phase structure is preserved. It also demonstrates the potential danger of using gas-phase calculations to predict the structures of gaseous ions born in solution, such as those from an electrospray source.


Assuntos
Adenina/química , Prótons , Simulação por Computador , Dimerização , Gases/química , Modelos Moleculares , Estrutura Molecular , Transição de Fase , Solventes/química , Espectrofotometria Infravermelho , Termodinâmica , Água/química
8.
J Phys Chem A ; 112(41): 10220-5, 2008 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-18816028

RESUMO

The proton- and the sodium ion-bound glycine homodimers are studied by a combination of infrared multiple photon dissociation (IRMPD) spectroscopy in the N-H and O-H stretching region and electronic structure calculations. For the proton-bound glycine dimer, in the region above 3100 cm (-1), the present spectrum agrees well with one recorded previously. The present work also reveals a weak, broad absorption spanning the region from 2650 to 3300 cm (-1). This feature is assigned to the strongly hydrogen-bonded and anharmonic N-H and O-H stretching modes. As well, the shared proton stretch is observed at 2440 cm (-1). The IRMPD spectra for the proton-bound glycine dimer confirms that the lowest energy structure is an ion-dipole complex between N-protonated glycine and the carboxyl group of the second glycine. This spectrum also helps to eliminate the existence of any of the higher-energy structures considered. The IRMPD spectrum for the sodium ion-bound dimer is a much simpler spectrum consisting of three bands assigned to the O-H stretch and the asymmetric and symmetric NH 2 stretching modes. The positions of these bands are very similar to those observed for the proton-bound glycine dimer. Numerous structures were considered and the experimental spectrum agrees with the B3LYP/6-31+G(d,p) predicted spectrum for the lowest energy structure, two bidentate glycine molecules bound to Na (+). Though some of the structures cannot be completely ruled out by comparing the experimental and theoretical spectra, they are energetically disfavored by at least 20 kJ mol (-1).


Assuntos
Glicina/química , Fótons , Sódio/química , Simulação por Computador , Dimerização , Ligação de Hidrogênio , Íons/química , Modelos Químicos , Concentração Osmolar , Espectrofotometria Infravermelho/métodos
9.
J Am Soc Mass Spectrom ; 26(1): 71-82, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25318698

RESUMO

A pulsed hydrogen/deuterium exchange (HDX) method has been developed for rapid monitoring of the exchange kinetics of protein ions with D2O a few milliseconds after electrospray ionization (ESI). The stepwise gradual evolution of HDX of multiply charged protein ions was monitored using the pulsed HDX mass spectrometry technique. Upon introducing a very short pulse of D2O (in the µs to ms time scale) into the linear ion trap (LIT) of a time-of-flight (TOF) mass spectrometer, bimodal distributions were detected for the ions of cytochrome c and ubiquitin. Mechanistic details of HDX reactions for ubiquitin and cytochrome c in the gas phase were uncovered and the structural transitions were followed by analyzing the kinetics of HDX.


Assuntos
Medição da Troca de Deutério/métodos , Espectrometria de Massas/métodos , Proteínas/análise , Cinética , Proteínas/química
10.
Protein Sci ; 24(8): 1282-91, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25970093

RESUMO

The kinetics and thermodynamics of protein folding are commonly studied in vitro by denaturing/renaturing intact protein sequences. How these folding mechanisms relate to de novo folding that occurs as the nascent polypeptide emerges from the ribosome is much less well understood. Here, we have employed limited proteolysis followed by mass spectrometry analyses to compare directly free and ribosome-tethered polypeptide chains of the Src-homology 3 (SH3) domain and its unfolded variant, SH3-m10. The disordered variant was found to undergo faster proteolysis than SH3. Furthermore, the trypsin cleavage patterns observed show minor, but significant, differences for the free and ribosome-bound nascent chains, with significantly fewer tryptic peptides detected in the presence of ribosome. The results highlight the utility of limited proteolysis coupled with mass spectrometry for the structural analysis of these complex systems, and pave the way for detailed future analyses by combining this technique with chemical labeling methods (for example, hydrogen-deuterium exchange, photochemical oxidation) to analyze protein folding in real time, including in the presence of additional ribosome-associated factors.


Assuntos
Peptídeos/química , Dobramento de Proteína , Ribossomos/química , Domínios de Homologia de src , Sequência de Aminoácidos , Dicroísmo Circular , Dados de Sequência Molecular , Desdobramento de Proteína , Proteólise , Espectrometria de Massas por Ionização por Electrospray
11.
J Mass Spectrom ; 49(10): 1002-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25303390

RESUMO

The effect on the conformations and stability of gas-phase ions of Cerezyme, a glycoprotein, when bound to three small-molecule chaperones has been studied using intact ESI MS, collision cross section and MS/MS measurements. To distinguish between the peaks from apo and small-molecule complex ions, Cerezyme is deglycosylated (dg-Cer). ESI MS of dg-Cer reveals that glycosylation accounts for 8.5% of the molecular weight. When excess chaperone, either covalent (2FGF) or noncovalent (A and B iminosugars), is added to solutions of dg-Cer, mass spectra show peaks from 1:1 chaperone-enzyme complexes as well as free enzyme. On average, ions of the apoenzyme have 1.6 times higher cross sections when activated in the source region of the mass spectrometer. For a given charge state, ions of complexes of 2FGF and B have about 30% and 8.4% lower cross sections, respectively, compared to the apoenzyme. Thus, binding the chaperones causes the gas-phase protein to adopt more compact conformations. The noncovalent complex ions dissociate by the loss of charged chaperones. In the gas phase, the relative stability of dg-Cer with B is higher than that with the A, whereas in solution A binds enzyme more strongly than B. Nevertheless, the disagreement is explained based on the greater number of contacts between the B and dg-Cer than the A and dg-Cer (13 vs. 8), indicating the importance of noncovalent interactions within the protein-chaperone complex in the absence of solvent. Findings in this work suggest a hypothesis towards predicting a consistent correlation between gas-phase properties to solution binding properties.


Assuntos
Glucosilceramidase/química , Imino Açúcares/química , Sequência de Aminoácidos , Desoxiglucose/análogos & derivados , Gases/química , Glucosilceramidase/metabolismo , Glicosilação , Imino Açúcares/metabolismo , Íons/química , Modelos Moleculares , Dados de Sequência Molecular , Espectrometria de Massas em Tandem
12.
J Am Soc Mass Spectrom ; 24(6): 907-16, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23595258

RESUMO

The effects of binding two small-molecule inhibitors to Agrobacterium sp. strain ATCC 21400 (Abg) ß-glucosidase on the conformations and stability of gas-phase ions of Abg have been investigated. Biotin-iminosugar conjugate (BIC) binds noncovalently to Abg while 2,4-dinitro-2-deoxy-2-fluoro-ß-D-glucopyranoside (2FG-DNP) binds covalently with loss of DNP. In solution, Abg is a dimer. Mass spectra show predominantly dimer ions, provided care is taken to avoid dissociation of dimers in solution and dimer ions in the ion sampling interface. When excess inhibitor, either covalent or noncovalent, is added to solutions of Abg, mass spectra show peaks almost entirely from 2:2 inhibitor-enzyme dimer complexes. Tandem mass spectrometry experiments show similar dissociation channels for the apo-enzyme and 2FG-enzyme dimers. The +21 dimer produces +10 and +11 monomers. The internal energy required to dissociate the +21 2FG-enzyme to its monomers (767 ± 30 eV) is about 36 eV higher than that for the apo-enzyme dimer (731 ± 6 eV), reflecting the stabilization of the free enzyme dimer by the 2FG inhibitor. The primary dissociation channels for the noncovalent BIC-enzyme dimer are loss of neutral and charged BIC. The internal energy required to induce loss of BIC is 482 ± 8 eV, considerably less than that required to dissociate the dimers. For a given charge state, ions of the covalent and noncovalent complexes have about 15 % and 25 % lower cross sections, respectively, compared with the apo-enzyme. Thus, binding the inhibitors causes the gas-phase protein to adopt more compact conformations. Noncovalent binding surprisingly produces the greatest change in protein ion conformation, despite the weaker inhibitor binding. ᅟ


Assuntos
Espectrometria de Massas em Tandem/métodos , beta-Glucosidase/antagonistas & inibidores , beta-Glucosidase/química , Agrobacterium/enzimologia , Biotina/química , Biotina/metabolismo , Gases/química , Glucosídeos/química , Glucosídeos/metabolismo , Imino Açúcares/química , Imino Açúcares/metabolismo , Íons/química , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização por Electrospray , beta-Glucosidase/metabolismo
13.
J Am Soc Mass Spectrom ; 20(3): 411-8, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19056298

RESUMO

In an effort to spectroscopically determine the structures of solvated ions composed of nucleic acid bases and amino acids, methods for their gas-phase synthesis have been studied. Ions were electrosprayed and solvated in the accumulation cell of a hybrid Q-FTICR filled with methanol or water vapor at approximately 10(-2) bar. There were subsequently transferred to the FTICR cell at 10(-10) mbar. Following their isolation in the FTICR, they can be investigated by studying their unimolecular blackbody infrared radiative dissociation (BIRD) or infrared multiple photon dissociation (IRMPD) spectroscopy. The IRMPD spectra for (Ade)(2)Li(+) and (Ade)(2)Li(H(2)O)(+) are reported and compared as well as BIRD rate constants for multiply solvated and metalated adenine ions.

14.
J Phys Chem A ; 112(1): 23-30, 2008 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-18069801

RESUMO

Structural aspects of proton-bound dimers composed of amino acids with aliphatic side chains are investigated using infrared multiple photon dissociation (IRMPD) spectroscopy and electronic structure calculations. Features in the IRMPD spectra in the 700-2,000 cm-1 range are due primarily to C=O stretching, NH2 bending, and COH bending. It was possible to distinguish between isomeric structures by comparing the experimental IRMPD spectra and those predicted using B3LYP/6-31+G(d,p). It was possible, based on the calculations and IRMPD spectra, to assign the experimental spectrum of the glycine proton-bound dimer to a structure which was slightly different from that assigned by previous spectroscopic investigations and in agreement with recent thermochemical studies. Since all proton-bound dimers studied here, composed of the different amino acids, have very similar spectra, it is expected that they also have very similar lowest-energy structures including the mixed alanine/glycine proton-bound dimer. In fact, the spectra are so similar that it would be very challenging to distinguish, for example, the glycine proton-bound dimer from the alanine or valine proton-bound dimers in the 700-2,000 cm-1 range. According to the calculated IR spectra it is shown that in the approximately 2,000-3,200 cm-1 range differentiating between different structures as well as different proton-bound dimers may be possible. This is due mainly to differences in the asymmetric stretch of the binding proton which is predicted to occur in this region.


Assuntos
Aminoácidos/química , Espectrofotometria Infravermelho/métodos , Dimerização , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA