RESUMO
BACKGROUND: Safe blood is essential for the care of patients with life-threatening anemia and hemorrhage. Low blood donation rates, inefficient testing procedures, and other supply chain disruptions in blood administration affect patients in low-resource settings across Sub-Saharan countries, including Kenya. Most efforts to improve access to transfusion have been unidimensional, usually focusing on only point along the blood system continuum, and have excluded community stakeholders from early stages of intervention development. Context-appropriate interventions to improve the availability of safe blood at the point of use in low-resource settings are of paramount importance. Thus, this protocol proposes a multifaceted approach to characterize the Kenyan blood supply chain through quantitative and qualitative analyses as well as an industrial engineering approach. METHODS: This study will use a mixed-methods approach in addition to engineering process mapping, modeling and simulation of blood availability in Kenya. It will be guided by a multidimensional three-by-three-by-three matrix: three socioeconomic settings, three components of the blood system continuum, and three levels of urgency of blood transfusion. Qualitative data collection includes one-on-one interviews and focus group discussions with stakeholders across the continuum to characterize ground-level deficits and potential policy, systems, and environment (PSE) interventions. Prospectively-collected quantitative data will be used to estimate blood collection and transfusion of blood. We will create a process map of the blood system continuum to model the response to PSE changes proposed by stakeholders. Lastly, we will identify those PSE changes that may have the greatest impact on blood transfusion availability, accounting for differences across socioeconomic settings and levels of urgency. DISCUSSION: Identifying and prioritizing community-driven interventions to improve blood supply in low-resource settings are of utmost importance. Varied constraints in blood collection, processing, delivery, and use make each socioeconomic setting unique. Using a multifaceted approach to understand the Kenyan blood supply and model the response to stakeholder-proposed PSE changes may lead to identification of contextually appropriate intervention targets to meet the transfusion needs of the population.
Assuntos
Doação de Sangue , Transfusão de Sangue , Humanos , Quênia , Simulação por Computador , PolíticasRESUMO
BACKGROUND: The supply of blood in many low- and middle-income nations in Sub-Saharan Africa (SSA) does not meet the patient care needs. Lack and delay of blood transfusion cause harm to patients and slow the rate of progress in other parts of the health system. Recognizing the power of implementation science, the BLOODSAFE Program was initiated which supports three SSA research study teams and one data coordinating center (DCC) with the goal to improve access to safe blood transfusion in SSA. STUDY DESIGN AND METHODS: The study team in Ghana is focusing on studying and decreasing iron deficiency in blood donors and evaluating social engagement of blood donors through different approaches. The study team in Kenya is building a "vein to vein" workflow model to elucidate and devise strategies to overcome barriers to blood donation and improve infrastructural components of blood product production and use. The Malawi team is studying the infectious disease ramifications of blood donation as well as blood donor retention strategies aimed at blood donors who commence their donation career in secondary schools. RESULTS AND DISCUSSION: Together the project teams and the DCC work as a consortium to support each other through a shared study protocol that will study donor motivations, outcomes, and adverse events across all three countries. The BLOODSAFE Program has the potential to lead to generalizable improvement approaches for increasing access to safe blood in SSA as well as mentoring and building the research capacity and careers of many investigators.
Assuntos
Doadores de Sangue , Transfusão de Sangue , Humanos , Pesquisadores , Motivação , GanaRESUMO
Although vaccine supply chains in many countries require additional stationary storage and transport capacity to meet current and future needs, international donors tend to donate stationary storage devices far more often than transport equipment. To investigate the impact of only adding stationary storage equipment on the capacity requirements of transport devices and vehicles, we used HERMES (Highly Extensible Resource for Modeling Supply Chains) to construct a discrete event simulation model of the Niger vaccine supply chain. We measured the transport capacity requirement for each mode of transport used in the Niger vaccine cold chain, both before and after adding cold rooms and refrigerators to relieve all stationary storage constraints in the system. With the addition of necessary stationary storage, the average transport capacity requirement increased from 88% to 144% for cold trucks, from 101% to 197% for pickup trucks, and from 366% to 420% for vaccine carriers. Therefore, adding stationary storage alone may worsen or create new transport bottlenecks as more vaccines flow through the system, preventing many vaccines from reaching their target populations. Dynamic modeling can reveal such relationships between stationary storage capacity and transport constraints.
Assuntos
Armazenamento de Medicamentos/métodos , Eficiência Organizacional , Meios de Transporte , Vacinas/provisão & distribuição , Modelos Teóricos , NígerRESUMO
OBJECTIVES: We investigated whether introducing the rotavirus and pneumococcal vaccines, which are greatly needed in West Africa, would overwhelm existing supply chains (i.e., the series of steps required to get a vaccine from the manufacturers to the target population) in Niger. METHODS: As part of the Bill and Melinda Gates Foundation-funded Vaccine Modeling Initiative, we developed a computational model to determine the impact of introducing these new vaccines to Niger's Expanded Program on Immunization vaccine supply chain. RESULTS: Introducing either the rotavirus vaccine or the 7-valent pneumococcal conjugate vaccine could overwhelm available storage and transport refrigerator space, creating bottlenecks that would prevent the flow of vaccines down to the clinics. As a result, the availability of all World Health Organization Expanded Program on Immunization vaccines to patients might decrease from an average of 69% to 28.2% (range = 10%-51%). Addition of refrigerator and transport capacity could alleviate this bottleneck. CONCLUSIONS: Our results suggest that the effects on the vaccine supply chain should be considered when introducing a new vaccine and that computational models can help assess evolving needs and prevent problems with vaccine delivery.
Assuntos
Programas de Imunização/organização & administração , Vacinas Pneumocócicas/administração & dosagem , Vacinas contra Rotavirus/administração & dosagem , Simulação por Computador , Armazenamento de Medicamentos , Vacina Pneumocócica Conjugada Heptavalente , Humanos , Programas de Imunização/provisão & distribuição , Níger , Vacinas Pneumocócicas/uso terapêutico , Refrigeração , Vacinas contra Rotavirus/uso terapêutico , Meios de Transporte , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/uso terapêutico , Organização Mundial da SaúdeRESUMO
BACKGROUND: Many countries, such as Niger, are considering changing their vaccine vial size presentation and may want to evaluate the subsequent impact on their supply chains, the series of steps required to get vaccines from their manufacturers to patients. The measles vaccine is particularly important in Niger, a country prone to measles outbreaks. METHODS: We developed a detailed discrete event simulation model of the vaccine supply chain representing every vaccine, storage location, refrigerator, freezer, and transport device (e.g., cold trucks, 4 × 4 trucks, and vaccine carriers) in the Niger Expanded Programme on Immunization (EPI). Experiments simulated the impact of replacing the 10-dose measles vial size with 5-dose, 2-dose and 1-dose vial sizes. RESULTS: Switching from the 10-dose to the 5-dose, 2-dose and 1-dose vial sizes decreased the average availability of EPI vaccines for arriving patients from 83% to 82%, 81% and 78%, respectively for a 100% target population size. The switches also changed transport vehicle's utilization from a mean of 58% (range: 4-164%) to means of 59% (range: 4-164%), 62% (range: 4-175%), and 67% (range: 5-192%), respectively, between the regional and district stores, and from a mean of 160% (range: 83-300%) to means of 161% (range: 82-322%), 175% (range: 78-344%), and 198% (range: 88-402%), respectively, between the district to integrated health centres (IHC). The switch also changed district level storage utilization from a mean of 65% to means of 64%, 66% and 68% (range for all scenarios: 3-100%). Finally, accounting for vaccine administration, wastage, and disposal, replacing the 10-dose vial with the 5 or 1-dose vials would increase the cost per immunized patient from $0.47US to $0.71US and $1.26US, respectively. CONCLUSIONS: The switch from the 10-dose measles vaccines to smaller vial sizes could overwhelm the capacities of many storage facilities and transport vehicles as well as increase the cost per vaccinated child.
Assuntos
Embalagem de Medicamentos/normas , Armazenamento de Medicamentos/métodos , Vacina contra Sarampo/provisão & distribuição , Humanos , Vacina contra Sarampo/economia , Modelos Estatísticos , NígerRESUMO
There is a critical shortage of blood available for transfusion in many low- and middle-income countries. The consequences of this scarcity are dire, resulting in uncounted morbidity and mortality from trauma, obstetric hemorrhage, and pediatric anemias, among numerous other conditions. The process of collecting blood from a donor to administering it to a patient involves many facets from donor availability to blood processing to blood delivery. Each step faces particular challenges in low- and middle-income countries. Optimizing existing strategies and introducing new approaches will be imperative to ensure a safe and sufficient blood supply worldwide.
RESUMO
The Expanded Programme on Immunization (EPI) was established in 1974 to ensure that children all around the world benefit from life-saving vaccines. However, in many low and middle income countries, it is extremely difficult to vaccinate the entire population with the standard regimen of vaccines. One important reason for this is geographically dispersed or nomadic populations. To improve vaccination rates, these countries typically use outreach, where health workers take vaccines to remote locations. Outreach is the last, critical link in the vaccine supply chain, and the locations selected to offer outreach directly impact the number of additional children that can be vaccinated. This research presents four quantitative models that can be used to optimize the selection of outreach locations, in order to maximize the number of residents that can be reached; each model addresses a different type of coverage possibility. The models are analyzed and contrasted using an example with inputs generated from a subset of data from the state of Bihar in India that was made available to the authors.
RESUMO
While new mechanisms such as advance market commitments and co-financing policies of the GAVI Alliance are allowing low- and middle-income countries to gain access to vaccines faster than ever, understanding the full scope of vaccine program costs is essential to ensure adequate resource mobilization. This costing analysis examines the vaccine costs, supply chain costs, and service delivery costs of immunization programs for routine immunization and for supplemental immunization activities (SIAs) for vaccines related to 18 antigens in 94 countries across the decade, 2011-2020. Vaccine costs were calculated using GAVI price forecasts for GAVI-eligible countries, and assumptions from the PAHO Revolving Fund and UNICEF for middle-income countries not supported by the GAVI Alliance. Vaccine introductions and coverage levels were projected primarily based on GAVI's Adjusted Demand Forecast. Supply chain costs including costs of transportation, storage, and labor were estimated by developing a mechanistic model using data generated by the HERMES discrete event simulation models. Service delivery costs were abstracted from comprehensive multi-year plans for the majority of GAVI-eligible countries and regression analysis was conducted to extrapolate costs to additional countries. The analysis shows that the delivery of the full vaccination program across 94 countries would cost a total of $62 billion (95% uncertainty range: $43-$87 billion) over the decade, including $51 billion ($34-$73 billion) for routine immunization and $11 billion ($7-$17 billion) for SIAs. More than half of these costs stem from service delivery at $34 billion ($21-$51 billion)-with an additional $24 billion ($13-$41 billion) in vaccine costs and $4 billion ($3-$5 billion) in supply chain costs. The findings present the global costs to attain the goals envisioned during the Decade of Vaccines to prevent millions of deaths by 2020 through more equitable access to existing vaccines for people in all communities. By projecting the full costs of immunization programs, our findings may aid to garner greater country and donor commitments toward adequate resource mobilization and efficient allocation. As service delivery costs have increasingly become the main driver of vaccination program costs, it is essential to pay additional consideration to health systems strengthening.
Assuntos
Programas de Imunização/economia , Vacinação/economia , Vacinas/administração & dosagem , Vacinas/economia , Países em Desenvolvimento , Saúde Global , Humanos , Programas de Imunização/organização & administração , Lactente , Recém-Nascido , Vacinas/provisão & distribuiçãoRESUMO
BACKGROUND: Within a typical vaccine supply chain, vaccines are packaged into individual cylindrical vials (each containing one or more doses) that are bundled together in rectangular "inner packs" for transport via even larger groupings such as cold boxes and vaccine carriers. The variability of vaccine inner pack and vial size may hinder efficient vaccine distribution because it constrains packing of cold boxes and vaccine carriers to quantities that are often inappropriate or suboptimal in the context of country-specific vaccination guidelines. METHODS: We developed in Microsoft Excel (Microsoft Corp., Redmond, WA) a spreadsheet model that evaluated the impact of different packing schemes for the Benin routine regimen plus the introduction of the Rotarix vaccine. Specifically, we used the model to compare the current packing scheme to that of a proposed modular packing scheme. RESULTS: Conventional packing of a Dometic RCW25 that aims to maximize fully-immunized children (FICs) results in 123 FICs and a packing efficiency of 81.93% compared to a maximum of 155 FICs and 94.1% efficiency for an alternative modular packaging system. CONCLUSIONS: Our analysis suggests that modular packaging systems could offer significant advantages over conventional vaccine packaging systems with respect to space efficiency and potential FICs, when they are stored in standard vaccine carrying devices. This allows for more vaccines to be stored within the same volume while also simplifying the procedures used by field workers to pack storage devices. Ultimately, modular packaging systems could be a simple way to help increase vaccine coverage worldwide.
Assuntos
Embalagem de Medicamentos/métodos , Vacinas/provisão & distribuição , Adolescente , Benin , Criança , Pré-Escolar , Humanos , Lactente , Recém-NascidoRESUMO
BACKGROUND: Many of the world's vaccine supply chains do not adequately provide vaccines, prompting several questions: how are vaccine supply chains currently structured, are these structures closely tailored to individual countries, and should these supply chains be radically redesigned? METHODS: We segmented the 57 GAVI-eligible countries' vaccine supply chains based on their structure/morphology, analyzed whether these segments correlated with differences in country characteristics, and then utilized HERMES to develop a detailed simulation model of three sample countries' supply chains and explore the cost and impact of various alternative structures. RESULTS: The majority of supply chains (34 of 57) consist of four levels, despite serving a wide diversity of geographical areas and population sizes. These four-level supply chains loosely fall into three clusters [(1) 18 countries relatively more bottom-heavy, i.e., many more storage locations lower in the supply chain, (2) seven with relatively more storage locations in both top and lower levels, and (3) nine comparatively more top-heavy] which do not correlate closely with any of the country characteristics considered. For all three cluster types, our HERMES modeling found that simplified systems (a central location shipping directly to immunization locations with a limited number of Hubs in between) resulted in lower operating costs. CONCLUSION: A standard four-tier design template may have been followed for most countries and raises the possibility that simpler and more tailored designs may be warranted.
Assuntos
Armazenamento de Medicamentos/métodos , Acessibilidade aos Serviços de Saúde/organização & administração , Vacinas/provisão & distribuição , Armazenamento de Medicamentos/economia , Acessibilidade aos Serviços de Saúde/economia , Humanos , Vacinas/economiaRESUMO
INTRODUCTION: New vaccine introductions have put strains on vaccine supply chains around the world. While increasing storage and transportation may be the most straightforward options, it is also important to consider what financial and operational benefits can be incurred. In 2012, suboptimal vaccine coverage and impending vaccine introductions prompted the Republic of Benin's Ministry of Health (MOH) to explore ways to improve their vaccine supply chain. METHODS: Working alongside the Beninese MOH, we utilized our computational model, HERMES, to explore the impact on cost and vaccine availability of three possible options: (1) consolidating the Commune level to a Health Zone level, (2) removing the Commune level completely, and (3) removing the Commune level and expanding to 12 Department Stores. We also analyzed the impact of adding shipping loops during delivery. RESULTS: At baseline, new vaccine introductions without any changes to the current system increased the logistics cost per dose ($0.23 to $0.26) and dropped the vaccine availability to 71%. While implementing the Commune level removal scenario had the same capital costs as implementing the Health Zone scenario, the Health Zone scenario had lower operating costs. This increased to an overall cost savings of $504,255 when implementing shipping loops. DISCUSSION: The best redesign option proved to be the synergistic approach of converting to the Health Zone design and using shipping loops (serving ten Health Posts/loop). While a transition to either redesign or only adding shipping loops was beneficial, implementing a redesign option and shipping loops can yield both lower capital expenditures and operating costs.
Assuntos
Programas de Imunização/economia , Programas de Imunização/organização & administração , Vacinas/economia , Vacinas/provisão & distribuição , Benin , Simulação por Computador , Custos e Análise de Custo , Atenção à Saúde/economia , Armazenamento de Medicamentos/economia , Meios de Transporte/economiaRESUMO
BACKGROUND: The challenge of keeping vaccines cold at health posts given the unreliability of power sources in many low- and middle-income countries and the expense and maintenance requirements of solar refrigerators has motivated the development of passive cold storage devices (PCDs), containers that keep vaccines cold without using an active energy source. With different PCDs under development, manufacturers, policymakers and funders need guidance on how varying different PCD characteristics may affect the devices' cost and utility. METHODS: We developed an economic spreadsheet model representing the lowest two levels of a typical Expanded Program on Immunization (EPI) vaccine supply chain: a district store, the immunization locations that the district store serves, and the transport vehicles that operate between the district store and the immunization locations. The model compares the use of three vaccine storage device options [(1) portable PCDs, (2) stationary PCDs, or (3) solar refrigerators] and allows the user to vary different device (e.g., size and cost) and scenario characteristics (e.g., catchment area population size and vaccine schedule). RESULTS: For a sample set of select scenarios and equipment specification, we found the portable PCD to generally be better suited to populations of 5,000 or less. The stationary PCD replenished once per month can be a robust design especially with a 35L capacity and a cost of $2,500 or less. The solar device was generally a reasonable alternative for most of the scenarios explored if the cost was $2,100 or less (including installation). No one device type dominated over all explored circumstances. Therefore, the best device may vary from country-to-country and location-to-location within a country. CONCLUSIONS: This study introduces a quantitative model to help guide PCD development. Although our selected set of explored scenarios and device designs was not exhaustive, future explorations can further alter model input values to represent additional scenarios and device designs.
Assuntos
Armazenamento de Medicamentos/economia , Armazenamento de Medicamentos/métodos , Modelos Econômicos , Refrigeração/economia , Refrigeração/métodos , Vacinação/economia , Vacinação/métodos , Simulação por Computador , HumanosRESUMO
OBJECTIVE: Since many of the world's vaccine supply chains contain multiple levels, the question remains of whether removing a level could bring efficiencies. METHODS: We utilized HERMES to generate a detailed discrete-event simulation model of Niger's vaccine supply chain and compared the current four-tier (central, regional, district, and integrated health center levels) with a modified three-tier structure (removing the regional level). Different scenarios explored various accompanying shipping policies and frequencies. FINDINGS: Removing the regional level and implementing a collection-based shipping policy from the district stores increases vaccine availability from a mean of 70-100% when districts could collect vaccines at least weekly. Alternatively, implementing a delivery-based shipping policy from the central store monthly in three-route and eight-route scenarios only increases vaccine availability to 87%. Restricting central-to district vaccine shipments to a quarterly schedule for three-route and eight-route scenarios reduces vaccine availability to 49%. The collection-based shipping policy from district stores reduces supply chain logistics cost per dose administered from US$0.14 at baseline to US$0.13 after removing the regional level. CONCLUSION: Removing the regional level from Niger's vaccine supply chain can substantially improve vaccine availability as long as certain concomitant adjustments to shipping policies and frequencies are implemented.
Assuntos
Vacinas/provisão & distribuição , Humanos , Modelos Organizacionais , Modelos Teóricos , Níger , SoftwareRESUMO
BACKGROUND: When addressing the urgent task of improving vaccine supply chains, especially to accommodate the introduction of new vaccines, there is often a heavy emphasis on stationary storage. Currently, donations to vaccine supply chains occur largely in the form of storage equipment. METHODS: This study utilized a HERMES-generated detailed, dynamic, discrete event simulation model of the Niger vaccine supply chain to compare the impacts on vaccine availability of adding stationary cold storage versus transport capacity at different levels and to determine whether adding stationary storage capacity alone would be enough to relieve potential bottlenecks when pneumococcal and rotavirus vaccines are introduced by 2015. RESULTS: Relieving regional level storage bottlenecks increased vaccine availability (by 4%) more than relieving storage bottlenecks at the district (1% increase), central (no change), and clinic (no change) levels alone. Increasing transport frequency (or capacity) yielded far greater gains (e.g., 15% increase in vaccine availability when doubling transport frequency to the district level and 18% when tripling). In fact, relieving all stationary storage constraints could only increase vaccine availability by 11%, whereas doubling the transport frequency throughout the system led to a 26% increase and tripling the frequency led to a 30% increase. Increasing transport frequency also reduced the amount of stationary storage space needed in the supply chain. The supply chain required an additional 61,269L of storage to relieve constraints with the current transport frequency, 55,255L with transport frequency doubled, and 51,791L with transport frequency tripled. CONCLUSIONS: When evaluating vaccine supply chains, it is important to understand the interplay between stationary storage and transport. The HERMES-generated dynamic simulation model showed how augmenting transport can result in greater gains than only augmenting stationary storage and can reduce stationary storage needs.
Assuntos
Criopreservação , Meios de Transporte , Vacinas/provisão & distribuição , NígerRESUMO
BACKGROUND: When policymakers make decision about the target populations and timing of influenza vaccination, they may not consider the impact on the vaccine supply chains, which may in turn affect vaccine availability. PURPOSE: Our goal is to explore the effects on the Thailand vaccine supply chain of introducing influenza vaccines and varying the target populations and immunization time-frames. METHODS: We Utilized our custom-designed software HERMES (Highly Extensible Resource for Modeling Supply Chains), we developed a detailed, computational discrete-event simulation model of the Thailand's National Immunization Program (NIP) supply chain in Trang Province, Thailand. A suite of experiments simulated introducing influenza vaccines for different target populations and over different time-frames prior to and during the annual influenza season. RESULTS: Introducing influenza vaccines creates bottlenecks that reduce the availability of both influenza vaccines as well as the other NIP vaccines, with provincial to district transport capacity being the primary constraint. Even covering only 25% of the Advisory Committee on Immunization Practice-recommended population while administering the vaccine over six months hinders overall vaccine availability so that only 62% of arriving patients can receive vaccines. Increasing the target population from 25% to 100% progressively worsens these bottlenecks, while increasing influenza vaccination time-frame from 1 to 6 months decreases these bottlenecks. CONCLUSION: Since the choice of target populations for influenza vaccination and the time-frame to deliver this vaccine can substantially affect the flow of all vaccines, policy-makers may want to consider supply chain effects when choosing target populations for a vaccine.
Assuntos
Política de Saúde , Programas de Imunização/provisão & distribuição , Vacinas contra Influenza/provisão & distribuição , Influenza Humana/prevenção & controle , Humanos , Modelos Teóricos , Densidade Demográfica , Software , Tailândia , Fatores de TempoRESUMO
In a low or middle income country, determining the correct number of routine vaccines to order at a health clinic can be difficult, especially given the variability in the number of patients arriving, minimal vaccination days and resource (e.g., information technology and refrigerator space) constraints. We developed a spreadsheet model to determine the potential impact of different ordering policies, basing orders on the arrival rates seen in the previous 1, 3, 6, or 12 sessions, or on long-term historical averages (where these might be available) along with various buffer stock levels (range: 5-50%). Experiments varied patient arrival rates (mean range: 1-30 per session), arrival rate distributions (Poisson, Normal, and Uniform) and vaccine vial sizes (range: 1-dose to 10-dose vials). It was found that when the number of doses per vial is small and the expected number of patients is low, the ordering policy has a more significant impact on the ability to meet demand. Using data from more prior sessions to determine arrival rates generally equates to a better ability to meet demand, although the marginal benefit is relatively small after more than 6 sessions are averaged. As expected, the addition of more buffer is helpful in obtaining better performance; however, this advantage also has notable diminishing returns. In general, the long-term demand rate, the vial sizes of the vaccines used and the method of determining the patient arrival rate all have an effect on the ability of a clinic to maximize the demand that is met.
Assuntos
Vacinação/economia , Vacinação/estatística & dados numéricos , Vacinas/economia , Vacinas/provisão & distribuição , Países em Desenvolvimento , Humanos , Modelos EstatísticosRESUMO
Introduced to minimize open vial wastage, single-dose vaccine vials require more storage space and therefore may affect vaccine supply chains (i.e., the series of steps and processes involved in distributing vaccines from manufacturers to patients). We developed a computational model of Thailand's Trang province vaccine supply chain to analyze the effects of switching from a ten-dose measles vaccine presentation to each of the following: a single-dose measles-mumps-rubella vaccine (which Thailand is currently considering) or a single-dose measles vaccine. While the Trang province vaccine supply chain would generally have enough storage and transport capacity to accommodate the switches, the added volume could push some locations' storage and transport space utilization close to their limits. Single-dose vaccines would allow for more precise ordering and decrease open vial waste, but decrease reserves for unanticipated demand. Moreover, the added disposal and administration costs could far outweigh the costs saved from preventing open vial wastage.
Assuntos
Armazenamento de Medicamentos/economia , Vacina contra Sarampo-Caxumba-Rubéola/provisão & distribuição , Custos e Análise de Custo , Armazenamento de Medicamentos/estatística & dados numéricos , Humanos , Vacina contra Sarampo-Caxumba-Rubéola/economia , Modelos Teóricos , TailândiaRESUMO
Although the substantial burdens of rotavirus and pneumococcal disease have motivated many countries to consider introducing the rotavirus vaccine (RV) and heptavalent pneumococcal conjugate vaccine (PCV-7) to their National Immunization Programs (EPIs), these new vaccines could affect the countries' vaccine supply chains (i.e., the series of steps required to get a vaccine from their manufacturers to patients). We developed detailed computational models of the Trang Province, Thailand, vaccine supply chain to simulate introducing various RV and PCV-7 vaccine presentations and their combinations. Our results showed that the volumes of these new vaccines in addition to current routine vaccines could meet and even exceed (1) the refrigerator space at the provincial district and sub-district levels and (2) the transport cold space at district and sub-district levels preventing other vaccines from being available to patients who arrive to be immunized. Besides the smallest RV presentation (17.1 cm³/dose), all other vaccine introduction scenarios required added storage capacity at the provincial level (range: 20 L-1151 L per month) for the three largest formulations, and district level (range: 1 L-124 L per month) across all introduction scenarios. Similarly, with the exception of the two smallest RV presentation (17.1 cm³/dose), added transport capacity was required at both district and sub-district levels. Added transport capacity required across introduction scenarios from the provincial to district levels ranged from 1 L-187 L, and district to sub-district levels ranged from 1 L-13 L per shipment. Finally, only the smallest RV vaccine presentation (17.1 cm³/dose) had no appreciable effect on vaccine availability at sub-districts. All other RV and PCV-7 vaccines were too large for the current supply chain to handle without modifications such as increasing storage or transport capacity. Introducing these new vaccines to Thailand could have dynamic effects on the availability of all vaccines that may not be initially apparent to decision-makers.
Assuntos
Vacinas Pneumocócicas/uso terapêutico , Rotavirus/imunologia , Criança , Pré-Escolar , Feminino , Vacina Pneumocócica Conjugada Heptavalente , Humanos , Lactente , Recém-Nascido , Masculino , Gravidez , TailândiaRESUMO
Single-dose vaccine formats can prevent clinic-level vaccine wastage but may incur higher production, medical waste disposal, and storage costs than multi-dose formats. To help guide vaccine developers, manufacturers, distributors, and purchasers, we developed a computational model to predict the potential economic impact of various single-dose versus multi-dose measles (MEA), hemophilus influenzae type B (Hib), Bacille Calmette-Guérin (BCG), yellow fever (YF), and pentavalent (DTP-HepB-Hib) vaccine formats. Lower patient demand favors fewer dose formats. The mean daily patient arrival thresholds for each vaccine format are as follows: for the MEA vaccine, 2 patients/day (below which the single-dose vial and above which the 10-dose vial are least costly); BCG vaccine, 6 patients/day (below, 10-dose vial; above, 20-dose vial); Hib vaccine, 5 patients/day (below, single-dose vial; above, 10-dose vial); YF vaccine, 33 patients/day (below, 5-dose vials; above 50-dose vial); and DTP-HepB-Hib vaccine, 5 patients/day (below, single-dose vial; above, 10-dose vial).