Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39026777

RESUMO

One third of women in the United States are affected by obesity during pregnancy. Maternal obesity (MO) is associated with an increased risk of neurodevelopmental and metabolic disorders in the offspring. The placenta, located at the maternal-fetal interface, is a key organ determining fetal development and likely contributes to programming of long-term offspring health. We profiled the term placental transcriptome in humans (pre-pregnancy BMI 35+ [MO condition] or 18.5-25 [lean condition]) using single-nucleus RNA-seq to compare expression profiles in MO versus lean conditions, and to reveal potential mechanisms underlying offspring disease risk. We recovered 62,864 nuclei of high quality from 10 samples each from the maternal-facing and fetal-facing sides of the placenta. On both sides in several cell types, MO was associated with upregulation of hypoxia response genes. On the maternal-facing side only, hypoxia gene expression was associated with offspring neurodevelopmental measures, in Gen3G, an independent pregnancy cohort with bulk placental tissue RNA-seq. We leveraged Gen3G to determine genes that correlated with impaired neurodevelopment and found these genes to be most highly expressed in extravillous trophoblasts (EVTs). EVTs further showed the strongest correlation between neurodevelopment impairment gene scores (NDIGSs) and the hypoxia gene score. We reanalyzed gene expression of cultured EVTs, and found increased NDIGSs associated with exposure to hypoxia. Among EVTs, accounting for the hypoxia gene score attenuated 44% of the association between BMI and NDIGSs. These data suggest that hypoxia in EVTs may be a key process in the neurodevelopmental programming of fetal exposure to MO.

2.
Nat Commun ; 15(1): 6744, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39112447

RESUMO

Demyelination is a common pathological feature in a wide range of diseases, characterized by the loss of myelin sheath and myelin-supporting oligodendrocytes. These losses lead to impaired axonal function, increased vulnerability of axons to damage, and result in significant brain atrophy and neuro-axonal degeneration. Multiple pathomolecular processes contribute to neuroinflammation, oligodendrocyte cell death, and progressive neuronal dysfunction. In this study, we use the cuprizone mouse model of demyelination to investigate long-term non-invasive gamma entrainment using sensory stimulation as a potential therapeutic intervention for promoting myelination and reducing neuroinflammation in male mice. Here, we show that multisensory gamma stimulation mitigates demyelination, promotes oligodendrogenesis, preserves functional integrity and synaptic plasticity, attenuates oligodendrocyte ferroptosis-induced cell death, and reduces brain inflammation. Thus, the protective effects of multisensory gamma stimulation on myelin and anti-neuroinflammatory properties support its potential as a therapeutic approach for demyelinating disorders.


Assuntos
Cuprizona , Doenças Desmielinizantes , Modelos Animais de Doenças , Bainha de Mielina , Oligodendroglia , Animais , Cuprizona/toxicidade , Masculino , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/terapia , Doenças Desmielinizantes/patologia , Camundongos , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Bainha de Mielina/metabolismo , Camundongos Endogâmicos C57BL , Ferroptose , Plasticidade Neuronal , Encéfalo/patologia , Encéfalo/metabolismo , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA