Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 25(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39201551

RESUMO

Gastric cancer is the fourth leading cause of cancer deaths worldwide. The presence of chemoresistant cells has been used to explain this high mortality rate. These higher tumorigenic and chemoresistant cells involve cancer stem cells (CSCs), which have the potential for self-renewal, a cell differentiation capacity, and a greater tumorigenic capacity. Our research group identified gastric cancer stem cells (GCSCs) with the CD24+CD44+CD326+ICAM1+ immunophenotype isolated from gastric cancer patients. Interestingly, this GCSC immunophenotype was absent in cells isolated from healthy people, who presented a cell population with a CD24+CD44+CD326+ immunophenotype, lacking ICAM1. We aimed to explore the role of ICAM1 in these GCSCs; for this purpose, we isolated GCSCs from the AGS cell line and generated a GCSC line knockout for ICAM1 using CRISPR/iCas9, which we named GCSC-ICAM1KO. To assess the role of ICAM1 in the GCSCs, we analyzed the migration, invasion, and chemoresistance capabilities of the GCSCs using in vitro assays and evaluated the migratory, invasive, and tumorigenic properties in a zebrafish model. The in vitro analysis showed that ICAM1 regulated STAT3 activation (pSTAT3-ser727) in the GCSCs, which could contribute to the ability of GCSCs to migrate, invade, and metastasize. Interestingly, we demonstrated that the GCSC-ICAM1KO cells lost their capacity to migrate, invade, and metastasize, but they exhibited an increased resistance to a cisplatin treatment compared to their parental GCSCs; the GCSC-ICAM1KO cells also exhibited an increased tumorigenic capability in vivo.


Assuntos
Movimento Celular , Resistencia a Medicamentos Antineoplásicos , Molécula 1 de Adesão Intercelular , Células-Tronco Neoplásicas , Neoplasias Gástricas , Peixe-Zebra , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Metástase Neoplásica , Cisplatino/farmacologia
2.
Dev Dyn ; 252(9): 1162-1179, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37222488

RESUMO

BACKGROUND: Betaglycan, also known as the TGFß type III receptor (Tgfbr3), is a co-receptor that modulates TGFß family signaling. Tgfbr3 is upregulated during C2C12 myoblast differentiation and expressed in mouse embryos myocytes. RESULTS: To investigate tgfbr3 transcriptional regulation during zebrafish embryonic myogenesis, we cloned a 3.2 kb promoter fragment that drives reporter transcription during C2C12 myoblasts differentiation and in the Tg(tgfbr3:mCherry) transgenic zebrafish. We detect tgfbr3 protein and mCherry expression in the adaxial cells concomitantly with the onset of their radial migration to become slow-twitch muscle fibers in the Tg(tgfbr3:mCherry). Remarkably, this expression displays a measurable antero-posterior somitic gradient expression. CONCLUSIONS: tgfbr3 is transcriptionally regulated during somitic muscle development in zebrafish with an antero-posterior gradient expression that preferentially marks the adaxial cells and their descendants.


Assuntos
Somitos , Peixe-Zebra , Animais , Camundongos , Somitos/metabolismo , Proteoglicanas/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Desenvolvimento Muscular/fisiologia
3.
Dev Dyn ; 251(1): 213-225, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34228380

RESUMO

BACKGROUND: The Transforming Growth Factor ß (TGFß) family is a group of related proteins that signal through a type I and type II receptors. Betaglycan, also known as the type III receptor (Tgfbr3), is a coreceptor for various ligands of the TGFß family that participates in heart, liver and kidney development as revealed by the tgfbr3-null mouse, as well as in angiogenesis as revealed by Tgfbr3 downregulation in morphant zebrafish. RESULTS: Here, we present CRISPR/Cas9-derived zebrafish Tgfbr3-null mutants, which exhibited unaltered embryonic angiogenesis and developed into fertile adults. One reproducible phenotype displayed by these Tgfbr3-null mutants is delayed chordacentra mineralization, which nonetheless does not result in vertebral abnormalities in the adult fishes. We also report that the canonical TGFß signaling pathway is needed for proper chordacentra mineralization and that Tgfbr3 absence decreases this signal in the notochordal cells responsible for this process. CONCLUSION: Betaglycan's "ligand presentation" function contributes to the optimal TGFß signaling required for zebrafish chordacentra mineralization.


Assuntos
Receptores de Fatores de Crescimento Transformadores beta , Peixe-Zebra , Animais , Camundongos , Proteoglicanas/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
4.
Phys Chem Chem Phys ; 21(28): 15779-15786, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31282523

RESUMO

Small-molecule fluorescent probes having optimized optical properties, such as high photostability and brightness, local microenvironment sensitivity and specific subcellular localizations, are increasingly available. Although the basis for designing efficient fluorophores for bioimaging applications is well established, implementing an improvement in a given photophysical characteristic always tends to compromise another optical property. This problem has enormous consequences for in vivo imaging, where ensuring a specific localization and precise control of the probe response is challenging. Herein we discuss a fluorescent probe, CC334, as a case study of the chromenylium-cyanine family that commonly exhibits highly complex photophysical schemes and highly interfered bioanalytical responses. By an exhaustive and concise analysis of the CC334 optical responses including detailed spectroscopic calibrations, steady-state microenvironment effects, ultrafast photophysics analysis and computational studies, we elucidate a new strategy to apply the probe in the singlet oxygen reactive oxygen species (1O2-ROS) monitoring using in vitro and in vivo models. The probe provides a new avenue for designing fluorescent probes to understand the dynamic behavior of subcellular environments.


Assuntos
Benzopiranos/química , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Cobalto/química , Ferrocianetos/química , Quinolinas/química , Espécies Reativas de Oxigênio/química , Análise Espectral
5.
Stem Cells Int ; 2024: 9999155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148939

RESUMO

Gastric cancer (GC) is the fourth leading cause of cancer-related death, associated with late diagnosis and treatment resistance. Currently, screening tests for GC are not cost-effective or have low accuracy. Previously, we described an extended phenotype of gastric cancer stem cells (GCSCs; CD24+CD44+CD54+EpCAM+) that is associated with metastasis and tumor stage in GC patients. The goal of the current research is to evaluate the presence of these GCSCs in the peripheral blood of GC patients and healthy volunteers. A total of 73 blood samples were collected from 32 GC patients and 41 healthy volunteers. After peripheral blood mononuclear cell (PBMC) extraction, multiparametric flow cytometry was performed looking for GCSCs. Using clustering data through artificial intelligence (AI), we defined high/low levels of circulating GCSCs (cGCSCs) and proceeded to evaluate its association with clinical and prognostic variables. Finally, a diagnostic test analysis was performed evaluating patients and healthy volunteers. We found that cGCSCs are present in most GC patients with a mean concentration of 0.48%. The AI clustering showed two groups with different cGCSC levels and clinical characteristics. Through statistical analysis, we confirmed the association between cGCSC levels and lymph node metastasis, distant metastasis, and overall survival. The diagnostic test analysis showed sensibility, specificity, and area under the curve (AUC) of 83%, 95%, and 0.911, respectively. Our results suggest that the assessment of cGCSCs CD24+CD44+CD54+EpCAM+ could be a potential noninvasive test, with prognostic value, as well as highly sensitive and specific for screening or diagnosis of GC; however, a larger scale study will be necessary to confirm this.

6.
Diagnostics (Basel) ; 14(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125490

RESUMO

Gastric cancer (GC) is a leading cause of death, and this pathology often receives a diagnosis in an advanced stage. The development of a less invasive and cost-effective test for detection is essential for decreasing the mortality rate and increasing the life expectancy of GC patients. We evaluated the potential targeting of CD54/ICAM1, a marker of gastric cancer stem cells, with miRNAs to detect GC in blood samples. The analyses included 79 blood samples, 38 from GC patients and 41 from healthy donors, who attended INCan, México City. The total RNA was obtained from the blood plasma, and RT-PCR and qPCR were performed to obtain the relative expression of each miRNA. Hsa-miR-335-5p was detected in the plasma of GC patients and healthy donors at the same levels. The ROC curve analyses indicated that this miRNA was not a candidate for the molecular diagnosis of GC. We did not observe a correlation between the expression of hsa-miR-335-5p and clinical variables; however, the Kaplan-Meier analyses indicated that, in patients who survived more than 12 months, a lower expression of hsa-miR-335-5p was correlated with a better prognosis. It would be convenient to evaluate a larger panel of miRNAs, including miRNAs expressed in a limited number of cell types or with a low number targets, to obtain more specific candidates for developing a robust test for the diagnosis/prognosis of GC.

7.
Stem Cell Res Ther ; 14(1): 16, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737794

RESUMO

BACKGROUND: Gastric cancer (GC) is a leading cause of cancer-related deaths worldwide. Specific and thorough identification of cancer cell subsets with higher tumorigenicity and chemoresistance, such as cancer stem cells (CSCs), could lead to the development of new and promising therapeutic targets. For better CSC identification, a complete or extended surface marker phenotype is needed to provide increased specificity for new cell targeting approaches. Our goal is to identify and characterize a putative extended phenotype for CSCs derived from patients with GC before treatment, as well as to evaluate its clinical value. In addition, we aim to ensure that cells with this phenotype have stemness and self-renewal capabilities. METHODS: This is a cohort study including 127 treatment-naïve patients with GC who attended the Instituto Nacional de Cancerología. Multiparametric flow cytometry analysis was performed to determine the extended phenotype of cells derived from gastric biopsies. The tumorigenic capability of cells identified in patients was assessed in a zebrafish model. RESULTS: CD24+CD44+CD54+EpCAM+ cells were present in all treatment-naïve patients included, with a median abundance of 1.16% (0.57-1.89%). The percentage of CD24+CD44+CD54+EpCAM+ cells was categorized as high or low using 1.19% as the cutoff for the CD24+CD44+CD54+EpCAM+ cell subset. Additionally, a higher TNM stage correlated with a higher percentage of CD24+CD44+CD54+EpCAM+ cells (Rho coefficient 0.369; p < 0.0001). We also demonstrated that a higher percentage of CD24+CD44+CD54+EpCAM+ cells was positively associated with metastasis. The metastatic potential of these cells was confirmed in a zebrafish model. Ultimately, under our conditions, we conclude that CD24+CD44+CD54+EpCAM+ cells are true gastric cancer stem cells (GCSCs). CONCLUSION: The CD24+CD44+CD54+EpCAM+ cells present in tissue samples from patients are true GCSCs. This extended phenotype results in better and more specific characterization of these highly tumorigenic cells. The relative quantification of CD24+CD44+CD54+EpCAM+ cells has potential clinical value, as these cells are associated with metastatic disease, making their presence an additional prognostic marker and possibly a target for the design of new antineoplastic treatments in the era of precision oncology. Overall, the extended CD24+CD44+CD54+EpCAM+ phenotype of GCSCs could support their isolation for the study of their stemness mechanisms, leading to the identification of better molecular targets for the development of both new therapeutic approaches such as oncoimmunotherapy and new diagnostic and clinical prognostic strategies for GC.


Assuntos
Neoplasias Gástricas , Peixe-Zebra , Animais , Biomarcadores Tumorais/metabolismo , Antígeno CD24/genética , Linhagem Celular Tumoral , Estudos de Coortes , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Medicina de Precisão , Neoplasias Gástricas/metabolismo , Peixe-Zebra/metabolismo , Molécula 1 de Adesão Intercelular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA