Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Phys Rev Lett ; 125(5): 055501, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32794839

RESUMO

We report a novel plastic deformation mechanism of bulk metallic glass composites (BMGCs) containing metastable ß-Ti dendrites. Plastic deformation of the BMGCs beyond the ultimate tensile strength is mediated by cooperative shear events, which comprise a shear band in the glassy matrix and a continuous ω-Ti band with a thickness of ∼10 nm in the ß-Ti dendrite. The cooperative shear leads to serrated shear avalanches. The formation of narrow ω-Ti bands is caused by high local strain rates during the cooperative shear. The cooperative shear mechanism enriches the deformation mechanisms of BMGCs and also deepens the understanding of ω-Ti formation.

2.
Chemistry ; 23(5): 1023-1027, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-27897338

RESUMO

The discovery of three polymorphs of N-(3,5-difluorophenyl)-2,4-difluorobenzamide, of which two exist as concomitant polymorphs, highlights the significance of short, linear C-H⋅⋅⋅F intermolecular interactions in the solid state. The formation of these polymorphs can be regulated by monitoring the scan rate in differential scanning calorimetry. The phases have been characterized structurally and the investigation of the mechanical properties depicts that Form 1 is stiffer and harder than Form 2 by 50 % and 33 %, respectively.

3.
Nano Lett ; 15(6): 3697-702, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25927160

RESUMO

Using first-principles calculations, we establish the existence of highly stable polymorphs of hcp metals (Ti, Mg, Be, La and Y) with nanoscale structural periodicity. They arise from heterogeneous deformation of the hcp structure occurring in response to large shear stresses localized at the basal planes separated by a few nanometers. Through Landau theoretical analysis, we show that their stability derives from nonlinear coupling between strains at different length scales. Such multiscale hyperelasticity and long-period structures constitute a new mechanism of size-dependent plasticity and its enhancement in nanoscale hcp metals.

4.
Nanotechnology ; 24(1): 015707, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23221348

RESUMO

We employ nanoindentation coupled with electrical contact resistance measurements for simultaneous characterization of the electrical and mechanical behaviors of a cellular assembly of carbon nanotubes (CNTs). Experimental results reveal two different responses that correspond to relatively dense and porous regions of the cellular structure. Distinct nonlinear electron transport characteristics are observed, which mainly originate from diffusive conductance in the CNT structure. In the denser region, differential conductance shows asymmetric minima at lower bias, implying that conductivity mainly results from bulk tunneling. However, the porous regions show insignificant differential conduction as opposed to the denser region.

5.
Nat Commun ; 13(1): 6645, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333307

RESUMO

Coordination polymers (CPs) are a class of crystalline solids that are considered brittle, due to the dominance of directional coordination bonding, which limits their utility in flexible electronics and wearable devices. Hence, engineering plasticity into functional CPs is of great importance. Here, we report plastic bending of a semiconducting CP crystal, Cu-Trz (Trz = 1,2,3-triazolate), that originates from delamination facilitated by the discrete bonding interactions along different crystallographic directions in the lattice. The coexistence of strong coordination bonds and weak supramolecular interactions, together with the unique molecular packing, are the structural features that enable the mechanical flexibility and anisotropic response. The spatially resolved analysis of short-range molecular forces reveals that the strong coordination bonds, and the adaptive C-H···π and Cu···Cu interactions, synergistically lead to the delamination of the local structures and consequently the associated mechanical bending. The proposed delamination mechanism offers a versatile tool for designing the plasticity of CPs and other molecular crystals.

6.
Chemistry ; 17(44): 12429-36, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-21932240

RESUMO

Hybrid inorganic-organic framework materials exhibit unique properties that can be advantageously tuned through choice of the inorganic and organic components and by control of the crystal structure. We present a new hydrothermally prepared 3D hybrid framework, [Mn(2-methylsuccinate)](n) (1), comprising alternating 2D manganese oxide sheets and isolated MnO(6) octahedra, pillared via syn, anti-syn carboxylates. Powder magnetic characterization shows that the compound is a homospin Mn(II) ferrimagnet below 2.4 K. The easy-axis is revealed by single-crystal magnetic susceptibility studies and a magnetic structure is proposed. Anisotropic elastic moduli and hardness, observed through nanoindentation on differing crystal facets, were correlated with specific structural features. Such measurements of anisotropy are not commonly undertaken, yet allow for a more comprehensive understanding of structure-property relationships.

7.
Opt Lett ; 34(16): 2414-6, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19684800

RESUMO

Nanoindentation technique was employed to measure the changes in mechanical properties of a glass preform subjected to different levels of UV exposure. The results reveal that short-term exposure leads to an appreciable increase in the Young's modulus (E), suggesting the densification of the glass, confirming the compaction-densification model. However, on prolonged exposure, E decreases, which provides what we believe to be the first direct evidence of dilation in the glass leading into the Type IIA regime. The present results rule out the hypothesis that continued exposure leads to an irreversible compaction and prove that index modulation regimes are intrinsic to the glass matrix.

8.
Nanotechnology ; 20(12): 125705, 2009 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-19420482

RESUMO

The mechanical properties of polyvinyl alcohol (PVA) and poly(methyl methacrylate) (PMMA)-matrix composites reinforced by functionalized few-layer graphene (FG) have been evaluated using the nano-indentation technique. A significant increase in both the elastic modulus and hardness is observed with the addition of 0.6 wt% of graphene. The crystallinity of PVA also increases with the addition of FG. This and the good mechanical interaction between the polymer and the FG, which provides better load transfer between the matrix and the fiber, are suggested to be responsible for the observed improvement in mechanical properties of the polymers.

9.
Acta Biomater ; 4(5): 1448-54, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18448402

RESUMO

Mechanical properties of flux-grown tricalcium phosphate (TCP) single crystals ranging in size from 50 to 75microm have been characterized by performing micro- and nanoindentation on their facets. Notwithstanding the inherent brittleness and anisotropy, these single crystals exhibit nanoscale plasticity in the form of pile-up around the edges of indents. A similar plastic response was observed in hydroxyapatite (HA) single crystals during nanoindentation in an earlier study. The hardness and elastic modulus obtained during nanoindentation are discussed in comparison with the polycrystalline forms of both TCP and HA found in the literature. The indentation fracture toughness values of TCP single crystals were found to be higher than those of HA single crystals. The higher values are attributed not only to the difference in crystal structure and corresponding differences in surface energy, but also to extensive crack bridging by ligament formation across crack faces during crack propagation.


Assuntos
Substitutos Ósseos/química , Cristalização/métodos , Sais/química , Elasticidade , Dureza , Temperatura Alta , Teste de Materiais , Estresse Mecânico , Propriedades de Superfície
10.
Sci Rep ; 6: 30935, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27480496

RESUMO

Molecular dynamics simulations were employed to investigate the plastic deformation within the shear bands in three different metallic glasses (MGs). To mimic shear bands, MG specimens were first deformed until flow localization occurs, and then the volume of the material within the localized regions was extracted and replicated. Homogeneous deformation that is independent of the size of the specimen was observed in specimens with shear band like structure, even at a temperature that is far below the glass transition temperature. Structural relaxation and rapid cooling were employed to examine the effect of free volume content on the deformation behavior. This was followed by detailed atomic structure analyses, employing the concepts of Voronoi polyhedra and "liquid-like" regions that contain high fraction of sub-atomic size open volumes. Results suggest that the total fraction of atoms in liquid-like regions is a key parameter that controls the plastic deformation in MGs. These are discussed in the context of reported experimental results and possible strategies for synthesizing monolithic amorphous materials that can accommodate large tensile plasticity are suggested.

11.
ACS Appl Mater Interfaces ; 7(31): 17016-22, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26186127

RESUMO

Mechanical properties of single-walled carbon nanohorns (SWNH) and SWNH plus few-layer graphene (EG)-reinforced poly(vinyl alcohol) (PVA) matrix composites have been measured using the nanoindentation technique. The elastic modulus (E) and hardness (H) of PVA were found to improve by ∼315% and ∼135%, respectively, upon the addition of just 0.4 wt % SWNH. These properties were found to be comparable to those obtained upon the addition of 0.2 wt % single-walled nanotubes (SWNT) to PVA. Furthermore, upon binary addition of 0.2 wt % EG and 0.4 wt % SWNH to PVA, benefits in the form of ∼400% and ∼330% synergy in E and H, respectively, were observed, along with an increased resistance to viscoelastic deformation. The reasons for these improvements are discussed in terms of the dimensionality of nanocarbon, the effectiveness of nanocarbon and polymer matrix interaction, and the influence of nanocarbon on the degree of crystallinity of the polymer. The results from SWNH reinforcement in this study demonstrate the scope for a novel and, in contrast to SWNT composites, a commercially feasible opportunity for strengthening polymer matrices.

12.
J Phys Condens Matter ; 26(38): 385402, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25185834

RESUMO

We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along [1 1̄ 0] and [1 2̄ 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF[1 2̄ 1]) in Cu reveals structural instabilities, indicating that the energy barrier (γusf) along the (1 1 1)[1 2̄ 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution.

13.
J Phys Condens Matter ; 26(5): 055006, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24356124

RESUMO

The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress-displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements.

14.
Chem Commun (Camb) ; 49(40): 4471-3, 2013 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-23571480

RESUMO

We report the mechanical properties of a framework structure, [Cu2F(HF)(HF2)(pyz)4][(SbF6)2]n (pyz = pyrazine), in which [Cu(pyz)2](2+) layers are pillared by HF2(-) anions containing the exceptionally strong F-H···F hydrogen bonds. Nanoindentation studies on single-crystals clearly demonstrate that such bonds are extremely robust and mechanically comparable with coordination bonds in this system.


Assuntos
Cobre/química , Fluoretos/química , Compostos Organometálicos/química , Pirazinas/química , Ligação de Hidrogênio
15.
J Chem Phys ; 128(10): 104508, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18345907

RESUMO

A possible mechanism of strain accommodation in large deformation of glasses is crystallization; deformation stability is a measure of the resistance of glasses to crystallization. We study the effect of atomic size ratio and atomic stiffness parameter (related to the curvature of the interatomic potential) on deformation stability of binary glasses using molecular static simulations. The deformation stability of a glass is found to increase with increasing atomic size ratio and magnitude of the atomic stiffness, which is proportional to the bulk modulus of the pure crystalline system, as well as the ratio of atomic stiffnesses of constituent atoms. To understand the role of the above parameters on deformation stability, misfit energies of randomly substituted solid solution fcc crystals and glasses are compared for various atomic size ratios and atomic stiffness values. Unlike in fcc solid solution, the misfit energy of binary glasses is found to be insensitive to the atomic size ratio. It is also found that the packing fraction of glasses is insensitive to the atomic size ratio, consistent with the above result. Beyond a critical atomic size ratio, the misfit energy of fcc solid solution exceeds the energy of the glass, thus making the amorphous state completely stable to deformation induced crystallization. Our analysis shows that critical atomic size ratio decreases with increasing atomic stiffness which leads to an increase in the deformation stability of glasses.

16.
J Biomed Mater Res ; 51(4): 650-9, 2000 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-10880113

RESUMO

We conducted an investigation into the nature of dentine mineralization and mechanical property gradients with the aid of experimental techniques such as the fluoroscopic X-ray microanalysis and instrumented microindentation, respectively. It was found that the tooth adapts to a complex structure with significant gradients in properties. We observed a significant correlation between the degree of mineralization within the dentine and the mechanical properties. The natural gradation in mechanical properties is explained by the stress analysis within anatomical-sized tooth specimens done using digital photoelasticity. These results are explained within the context of the functional requirements that are imposed on the tooth. This study highlights tooth structure as a biologically adapted, functionally graded material.


Assuntos
Dentina/química , Dentina/fisiologia , Fenômenos Biomecânicos , Dentina/anatomia & histologia , Elasticidade , Microanálise por Sonda Eletrônica , Fluoroscopia , Humanos , Minerais/análise , Fotoquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA