Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Electrophoresis ; 45(5-6): 380-391, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072651

RESUMO

In contemporary biomedical research, the zebrafish (Danio rerio) is increasingly considered a model system, as zebrafish embryos and larvae can (potentially) fill the gap between cultured cells and mammalian animal models, because they can be obtained in large numbers, are small and can easily be manipulated genetically. Given that capillary electrophoresis-mass spectrometry (CE-MS) is a useful analytical separation technique for the analysis of polar ionogenic metabolites in biomass-limited samples, the aim of this study was to develop and assess a CE-MS-based analytical workflow for the profiling of (endogenous) metabolites in extracts from individual zebrafish larvae and pools of small numbers of larvae. The developed CE-MS workflow was used to profile metabolites in extracts from pools of 1, 2, 4, 8, 12, 16, 20, and 40 zebrafish larvae. For six selected endogenous metabolites, a linear response (R2  > 0.98) for peak areas was obtained in extracts from these pools. The repeatability was satisfactory, with inter-day relative standard deviation values for peak area of 9.4%-17.7% for biological replicates (n = 3 over 3 days). Furthermore, the method allowed the analysis of over 70 endogenous metabolites in a pool of 12 zebrafish larvae, and 29 endogenous metabolites in an extract from only 1 zebrafish larva. Finally, we applied the optimized CE-MS workflow to identify potential novel targets of the mineralocorticoid receptor in mediating the effects of cortisol.


Assuntos
Hidrocortisona , Peixe-Zebra , Animais , Hidrocortisona/farmacologia , Larva , Fluxo de Trabalho , Espectrometria de Massas/métodos , Metabolômica/métodos , Eletroforese Capilar/métodos , Mamíferos
2.
Electrophoresis ; 45(15-16): 1316-1324, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38456383

RESUMO

When hospitalized, infants, particularly preterm, are often subjected to multiple painful needle procedures to collect sufficient blood for metabolic screening or diagnostic purposes using standard clinical tests. For example, at least 100 µL of whole blood is required to perform one creatinine plasma measurement with enzymatic colorimetric assays. As capillary electrophoresis-mass spectrometry (CE-MS) utilizing a sheathless porous tip interface only requires limited amounts of sample for in-depth metabolic profiling studies, the aim of this work was to assess the utility of this method for the determination of creatinine in low amounts of plasma using residual blood samples from adults and infants. By using a starting amount of 5 µL of plasma and an injection volume of only 6.7 nL, a detection limit (S/N = 3) of 30 nM could be obtained for creatinine, and intra- and interday precisions (for peak area ratios) were below 3.2%. To shorten the electrophoretic separation time, a multi-segment injection (MSI) strategy was employed to analyze up to seven samples in one electrophoretic run. The findings obtained by CE-MS for creatinine in pretreated plasma were compared with the values acquired by an enzymatic colorimetric assay typically used in clinical laboratories for this purpose. The comparison revealed that CE-MS could be used in a reliable way for the determination of creatinine in residual plasma samples from infants and adults. Nevertheless, to underscore the clinical efficacy of this method, a subsequent investigation employing an expanded pool of plasma samples is imperative. This will not only enhance the method's diagnostic utility but also contribute to minimizing both the amount and frequency of blood collection required for diagnostic purposes.


Assuntos
Creatinina , Eletroforese Capilar , Espectrometria de Massas , Humanos , Eletroforese Capilar/métodos , Creatinina/sangue , Espectrometria de Massas/métodos , Reprodutibilidade dos Testes , Adulto , Limite de Detecção , Lactente , Recém-Nascido
3.
Electrophoresis ; 44(24): 2000-2024, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37667867

RESUMO

Single-cell heterogeneity in metabolism, drug resistance and disease type poses the need for analytical techniques for single-cell analysis. As the metabolome provides the closest view of the status quo in the cell, studying the metabolome at single-cell resolution may unravel said heterogeneity. A challenge in single-cell metabolome analysis is that metabolites cannot be amplified, so one needs to deal with picolitre volumes and a wide range of analyte concentrations. Due to high sensitivity and resolution, MS is preferred in single-cell metabolomics. Large numbers of cells need to be analysed for proper statistics; this requires high-throughput analysis, and hence automation of the analytical workflow. Significant advances in (micro)sampling methods, CE and ion mobility spectrometry have been made, some of which have been applied in high-throughput analyses. Microfluidics has enabled an automation of cell picking and metabolite extraction; image recognition has enabled automated cell identification. Many techniques have been used for data analysis, varying from conventional techniques to novel combinations of advanced chemometric approaches. Steps have been set in making data more findable, accessible, interoperable and reusable, but significant opportunities for improvement remain. Herein, advances in single-cell analysis workflows and data analysis are discussed, and recommendations are made based on the experimental goal.


Assuntos
Metaboloma , Metabolômica , Metabolômica/métodos , Espectrometria de Massas/métodos , Manejo de Espécimes , Análise de Célula Única
4.
Electrophoresis ; 43(18-19): 1814-1821, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35560354

RESUMO

The composition of wine is determined by a complex interaction between environmental factors, genetic factors (i.e., grape varieties), and winemaking practices (including technology and storage). Metabolomics using NMR spectroscopy, GC-MS, and/or LC-MS has shown to be a useful approach for assessing the origin, authenticity, and quality of various wines. Nonetheless, the use of additional analytical techniques with complementary separation mechanisms may aid in the deeper understanding of wine's metabolic processes. In this study, we demonstrate that CE-MS is a very suitable approach for the efficient profiling of polar ionogenic metabolites in wines. Without using any sample preparation or derivatization, wine was analyzed using a 10-min CE-MS workflow with interday RSD values for 31 polar and charged metabolites below 3.8% and 23% for migration times and peak areas, respectively. The utility of this workflow for the global profiling of polar ionogenic metabolites in wine was evaluated by analyzing different cool-climate Polish wine samples.


Assuntos
Vinho , Eletroforese Capilar/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Polônia , Vinho/análise
5.
Electrophoresis ; 42(4): 381-401, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32906195

RESUMO

Capillary electrophoresis-mass spectrometry (CE-MS) is now a mature analytical technique in metabolomics, notably for the efficient profiling of polar and charged metabolites. Over the past few years, (further) progress has been made in the design of improved interfacing techniques for coupling CE to MS; also, in the development of CE-MS approaches for profiling metabolites in volume-restricted samples, and in strategies that further enhance the metabolic coverage. In this article, which is a follow-up of a previous review article covering the years 2016-2018 (Electrophoresis 2019, 40, 165-179), the main (technological) developments in CE-MS methods and strategies for metabolomics are discussed covering the literature from July 2018 to June 2020. Representative examples highlight the utility of CE-MS in the fields of biomedical, clinical, microbial, plant and food metabolomics. A complete overview of recent CE-MS-based metabolomics studies is given in a table, which provides information on sample type and pretreatment, capillary coatings, and MS detection mode. Finally, some general conclusions and perspectives are given.


Assuntos
Eletroforese Capilar , Espectrometria de Massas , Metabolômica , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Humanos , Camundongos , Plantas/metabolismo , Leveduras/metabolismo
6.
Adv Exp Med Biol ; 1336: 159-178, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34628632

RESUMO

Capillary electrophoresis-mass spectrometry (CE-MS) is a very useful analytical technique for the selective and highly efficient profiling of polar and charged metabolites in a wide range of biological samples. Compared to other analytical techniques, the use of CE-MS in metabolomics is relatively low as the approach is still regarded as technically challenging and not reproducible. In this chapter, the possibilities of CE-MS for metabolomics are highlighted with special emphasis on the use of recently developed interfacing designs. The utility of CE-MS for targeted and untargeted metabolomics studies is demonstrated by discussing representative and recent examples in the biomedical and clinical fields. The potential of CE-MS for large-scale and quantitative metabolomics studies is also addressed. Finally, some general conclusions and perspectives are given on this strong analytical separation technique for probing the polar metabolome.


Assuntos
Eletroforese Capilar , Metabolômica , Espectrometria de Massas , Metaboloma , Software
7.
Anal Chem ; 92(20): 14103-14112, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32961048

RESUMO

Capillary zone electrophoresis-mass spectrometry (CE-MS) is a mature analytical tool for the efficient profiling of (highly) polar and ionizable compounds. However, the use of CE-MS in comparison to other separation techniques remains underrepresented in metabolomics, as this analytical approach is still perceived as technically challenging and less reproducible, notably for migration time. The latter is key for a reliable comparison of metabolic profiles and for unknown biomarker identification that is complementary to high resolution MS/MS. In this work, we present the results of a Metabo-ring trial involving 16 CE-MS platforms among 13 different laboratories spanning two continents. The goal was to assess the reproducibility and identification capability of CE-MS by employing effective electrophoretic mobility (µeff) as the key parameter in comparison to the relative migration time (RMT) approach. For this purpose, a representative cationic metabolite mixture in water, pretreated human plasma, and urine samples spiked with the same metabolite mixture were used and distributed for analysis by all laboratories. The µeff was determined for all metabolites spiked into each sample. The background electrolyte (BGE) was prepared and employed by each participating lab following the same protocol. All other parameters (capillary, interface, injection volume, voltage ramp, temperature, capillary conditioning, and rinsing procedure, etc.) were left to the discretion of the contributing laboratories. The results revealed that the reproducibility of the µeff for 20 out of the 21 model compounds was below 3.1% vs 10.9% for RMT, regardless of the huge heterogeneity in experimental conditions and platforms across the 13 laboratories. Overall, this Metabo-ring trial demonstrated that CE-MS is a viable and reproducible approach for metabolomics.


Assuntos
Eletroforese Capilar/métodos , Compostos Orgânicos/sangue , Compostos Orgânicos/urina , Espectrometria de Massas em Tandem/métodos , Cátions/química , Bases de Dados de Compostos Químicos , Eletrólitos/química , Humanos , Metaboloma , Metabolômica , Reprodutibilidade dos Testes
8.
Small ; 16(21): e2000295, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32240572

RESUMO

Nanomaterials (NMs) are promptly coated with biomolecules in biological systems leading to the formation of the so-called corona. To date, research has predominantly focused on the protein corona and how it affects NM uptake, distribution, and bioactivity by conferring a biological identity to NMs enabling interactions with receptors to mediate cellular responses. Thus, protein corona studies are now integral to nanosafety assessment. However, a larger class of molecules, the metabolites, which are orders of magnitude smaller than proteins (<1000 Da) and regulate metabolic pathways, has been largely overlooked. This hampers the understanding of the bio-nano interface, development of computational predictions of corona formation, and investigations into uptake or toxicity at the cellular level, including identification of molecular initiating events triggering adverse outcome pathways. Here, a capillary electrophoresis-mass spectrometry based metabolomics approach reveals that pure polar ionogenic metabolite standards differentially adsorb to a range of 6 NMs (SiO2 , 3 TiO2 with different surface chemistries, and naïve and carboxylated polystyrene NMs). The metabolite corona composition is quantitatively compared using protein-free and complete plasma samples, revealing that proteins in samples significantly change the composition of the metabolite corona. This key finding provides the basis to include the metabolite corona in future nanosafety endeavors.


Assuntos
Metabolômica , Nanopartículas , Coroa de Proteína , Eletroforese Capilar , Espectrometria de Massas , Nanopartículas/química , Nanopartículas/metabolismo , Projetos Piloto , Coroa de Proteína/química , Dióxido de Silício/química , Titânio/química
9.
Electrophoresis ; 41(5-6): 360-369, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31907937

RESUMO

Negative ion mode nano-ESI-MS is often considered for the analysis of acidic compounds, including nucleotides. However, under high aqueous separation conditions, corona discharge is frequently observed at emitter tips, which may result in low ion abundances and reduced nano-ESI needle emitter lifetimes. In this work, we introduce a sheathless CE-MS method for the highly efficient and sensitive analysis of nucleotides employing ESI in positive ion mode, thereby fully circumventing corona discharge. By using a background electrolyte of 16 mM ammonium acetate (pH 9.7) a mixture of 12 nucleotides, composed of mono-, di-, and tri-phosphates, could be efficiently analyzed with plate numbers per meter above 220 000 and with LODs in the range from 0.06 to 1.3 nM, corresponding to 0.4 to 8.6 attomole, when using an injection volume of about 6.5 nL only. The utility of the method was demonstrated for the profiling of nucleotides in low numbers of mammalian cells using HepG2 cells as a model system. Endogenous nucleotides could be efficiently analyzed in extracts from 50 000 down to 500 HepG2 cells only. Moreover, apart from nucleotides, also some nicotinamide-adenine dinucleotides and amino acids could be analyzed under these conditions, thereby clearly illustrating the utility of this approach for metabolic profiling of low amounts of biological material.


Assuntos
Eletroforese Capilar/métodos , Nucleotídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Células Hep G2 , Humanos , Limite de Detecção , Modelos Lineares , Metaboloma , Reprodutibilidade dos Testes
10.
Electrophoresis ; 40(18-19): 2349-2359, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31106868

RESUMO

The efficient profiling of highly polar and charged metabolites in biological samples remains a huge analytical challenge in metabolomics. Over the last decade, new analytical techniques have been developed for the selective and sensitive analysis of polar ionogenic compounds in various matrices. Still, the analysis of such compounds, notably for acidic ionogenic metabolites, remains a challenging endeavor, even more when the available sample size becomes an issue for the total analytical workflow. In this paper, we give an overview of the possibilities of capillary electrophoresis-mass spectrometry (CE-MS) for anionic metabolic profiling by focusing on main methodological developments. Attention is paid to the development of improved separation conditions and new interfacing designs in CE-MS for anionic metabolic profiling. A complete overview of all CE-MS-based methods developed for this purpose is provided in table format (Table 1) which includes information on sample type, separation conditions, mass analyzer and limits of detection (LODs). Selected applications are discussed to show the utility of CE-MS for anionic metabolic profiling, especially for small-volume biological samples. On the basis of the examination of the reported literature in this specific field, we conclude that there is still room for the design of a highly sensitive and reliable CE-MS method for anionic metabolic profiling. A rigorous validation and the availability of standard operating procedures would be highly favorable in order to make CE-MS an alternative, viable analytical technique for metabolomics.


Assuntos
Ânions/análise , Eletroforese Capilar , Espectrometria de Massas , Metaboloma/fisiologia , Metabolômica , Animais , Humanos , Limite de Detecção , Camundongos , Ratos , Reprodutibilidade dos Testes
11.
Electrophoresis ; 40(1): 165-179, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30232802

RESUMO

In the field of metabolomics, CE-MS is now recognized as a strong analytical technique for the analysis of (highly) polar and charged metabolites in a wide range of biological samples. Over the past few years, significant attention has been paid to the design and improvement of CE-MS approaches for (large-scale) metabolic profiling studies and for establishing protocols in order to further expand the role of CE-MS in metabolomics. In this paper, which is a follow-up of a previous review paper covering the years 2014-2016 (Electrophoresis 2017, 38, 190-202), main advances in CE-MS approaches for metabolomics studies are outlined covering the literature from July 2016 to June 2018. Aspects like developments in interfacing designs and data analysis tools for improving the performance of CE-MS for metabolomics are discussed. Representative examples highlight the utility of CE-MS in the fields of biomedical, clinical, microbial, and plant metabolomics. A complete overview of recent CE-MS-based metabolomics studies is given in a table, which provides information on sample type and pretreatment, capillary coatings and MS detection mode. Finally, some general conclusions and perspectives are given.


Assuntos
Eletroforese Capilar , Espectrometria de Massas , Metabolômica , Animais , Humanos , Metaboloma , Camundongos
12.
Electrophoresis ; 40(18-19): 2309-2320, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31025710

RESUMO

The actual utility of capillary electrophoresis-mass spectrometry (CE-MS) for biomarker discovery using metabolomics still needs to be assessed. Therefore, a simulated comparative metabolic profiling study for biomarker discovery by CE-MS was performed, using pooled human plasma samples with spiked biomarkers. Two studies have been carried out in this work. Focus of study I was on comparing two sets of plasma samples, in which one set (class I) was spiked with five isotope-labeled compounds, whereas another set (class II) was spiked with six different isotope-labeled compounds. In study II, focus was also on comparing two sets of plasma samples, however, the isotope-labeled compounds were spiked to both class I and class II samples but with concentrations which differ by a factor two between both classes (with one compound absent in each class). The aim was to determine whether CEMS-based metabolomics could reveal the spiked biomarkers as the main classifiers, applying two different data analysis software tools (MetaboAnalyst and Matlab). Unsupervised analysis of the recorded metabolic profiles revealed a clear distinction between class I and class II plasma samples in both studies. This classification was mainly attributed to the spiked isotope-labeled compounds, thereby emphasizing the utility of CE-MS for biomarker discovery.


Assuntos
Biomarcadores/sangue , Eletroforese Capilar/métodos , Espectrometria de Massas/métodos , Metaboloma/fisiologia , Metabolômica/métodos , Aminoácidos/sangue , Humanos , Marcação por Isótopo , Reprodutibilidade dos Testes , Software
13.
Electrophoresis ; 38(1): 190-202, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27718257

RESUMO

CE-MS can be considered a useful analytical technique for the global profiling of (highly) polar and charged metabolites in various samples. Over the past few years, significant advancements have been made in CE-MS approaches for metabolomics studies. In this paper, which is a follow-up of a previous review paper covering the years 2012-2014 (Electrophoresis 2015, 36, 212-224), recent CE-MS strategies developed for metabolomics covering the literature from July 2014 to June 2016 are outlined. Attention will be paid to new CE-MS approaches for the profiling of anionic metabolites and the potential of SPE coupled to CE-MS is also demonstrated. Representative examples illustrate the applicability of CE-MS in the fields of biomedical, clinical, microbial, plant, and food metabolomics. A complete overview of recent CE-MS-based metabolomics studies is given in a table, which provides information on sample type and pretreatment, capillary coatings, and MS detection mode. Finally, general conclusions and perspectives are given.


Assuntos
Eletroforese Capilar/métodos , Isotacoforese/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Animais , Biomarcadores/análise , Análise de Alimentos , Humanos , Nucleotídeos/análise , Compostos Orgânicos/análise , Plantas/química , Fosfatos Açúcares/análise , Propriedades de Superfície
14.
Electrophoresis ; 37(9): 1170-86, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26864699

RESUMO

Electroextraction (EE) and electromembrane extraction (EME) are sample preparation techniques that both require an electric field that is applied over a liquid-liquid system, which enables the migration of charged analytes. Furthermore, both techniques are often used to pre-concentrate analytes prior to analysis. In this review an overview is provided of the body of literature spanning April 2012-November 2015 concerning EE and EME, focused on hyphenation to analytical techniques. First, the theoretical aspects of concentration enhancement in EE and EME are discussed to explain extraction recovery and enrichment factor. Next, overviews are provided of the techniques based on their hyphenation to LC, GC, CE, and direct detection. These overviews cover the compounds and matrices, experimental aspects (i.e. donor volume, acceptor volume, extraction time, extraction voltage, and separation time) and the analytical aspects (i.e. limit of detection, enrichment factor, and extraction recovery). Techniques that were either hyphenated online to analytical techniques or show high potential with respect to online hyphenation are highlighted. Finally, the potential future directions of EE and EME are discussed.


Assuntos
Técnicas Eletroquímicas , Membranas Artificiais , Cromatografia Líquida , Limite de Detecção , Proteínas/análise , Proteínas/química , Proteínas/isolamento & purificação , Reprodutibilidade dos Testes
15.
Electrophoresis ; 37(7-8): 1007-14, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26593113

RESUMO

The performance of CE coupled on-line to MS via a sheathless porous tip sprayer was evaluated for anionic metabolic profiling. A representative metabolite mixture and biological samples were used for the evaluation of various analytical parameters, such as peak efficiency (plate numbers), migration time and peak area repeatability, and LODs. The BGE, i.e. 10% acetic acid (pH 2.2), previously used for cationic metabolic profiling was now assessed for anionic metabolic profiling by using MS detection in negative ion mode. For test compounds, RSDs for migration times and peak areas were below 2 and 11%, respectively, and plate numbers ranged from 60 000 to 40 0000 demonstrating a high separation efficiency. Critical metabolites with low or no retention on reversed-phase LC could be efficiently separated and selectively analyzed by the sheathless CE-MS method. An injection volume of only circa 20 nL resulted in LODs between 10 and 200 nM (corresponding to an amount of 0.4-4 fmol), which was an at least tenfold improvement as compared to LODs obtained by conventional CE-MS approaches for these analytes. The methodology was applied to anionic metabolic profiling of glioblastoma cell line extracts. Overall, a sheathless CE-MS method has been developed for highly efficient and sensitive anionic metabolic profiling studies, which can also be used for cationic metabolic profiling studies by only switching the MS detection and separation voltage polarity.


Assuntos
Ânions/análise , Eletroforese Capilar/métodos , Metabolômica/métodos , Linhagem Celular Tumoral , Humanos , Limite de Detecção , Metaboloma/fisiologia , Porosidade , Reprodutibilidade dos Testes
16.
Electrophoresis ; 37(1): 35-44, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26464172

RESUMO

An overview of the design and application of coupled solid-phase extraction-capillary electrophoresis (SPE-CE) systems reported in the literature between July 2013 and June 2015 is provided in this paper. The present article is a continuation of our previous review papers on this topic which covered the time period 2000-2013 (Electrophoresis 2008, 29, 108-128; Electrophoresis 2010, 31, 44-54; Electrophoresis 2012, 33, 243-250; Electrophoresis 2014, 35, 128-137). The use of in-line and on-line SPE-CE approaches is treated and outlined in this review. Recent advancements, such as, for example, the use of aptamers as affinity material for in-line SPE-CE, the use of a bead string design for in-line fritless SPE-CE, and new interfacing techniques for the on-line coupling of SPE to CE, are outlined. Selected examples demonstrate the applicability of the coupled SPE-CE systems for biomedical, pharmaceutical, environmental, and food studies. A complete overview of the recent SPE-CE studies is given in table format, providing information on sample type, SPE sorbent, coupling mode, detection mode, and LOD. Finally, some general conclusions and perspectives are provided.


Assuntos
Eletroforese Capilar , Extração em Fase Sólida
17.
Electrophoresis ; 36(1): 212-24, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25287884

RESUMO

In the field of metabolomics, CE-MS is now regarded as a useful complementary analytical technique for the profiling of (highly) polar ionogenic metabolites in biological samples. Over the past few years, significant advancements have been made in CE-MS approaches for metabolic profiling studies. This paper, which is a follow-up of three previous review papers covering the years 2000-2012 [Electrophoresis 2009, 30, 276-291; Electrophoresis 2011, 32, 52-65; Electrophoresis 2013, 34, 86-98], provides an update of these developments covering the scientific literature from July 2012 to June 2014. Attention will be paid to novel interfacing techniques for coupling CE to MS and their implications for metabolomics studies. The potential of CEC-MS and MEKC-MS are also considered, and CE-MS systems for high-throughput metabolic profiling are discussed. The applicability of CE-MS for metabolomics studies is demonstrated by representative examples in the fields of biomedical, clinical, microbial, plant, environmental, and food metabolomics. An overview of recent CE-MS-based metabolomics studies is given in a table, which provides information on sample type and pretreatment, capillary coatings, and MS detection mode. Finally, general conclusions and perspectives are given.


Assuntos
Eletroforese Capilar/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Animais , Eletroforese Capilar/instrumentação , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Desenho de Equipamento , Análise de Alimentos/instrumentação , Análise de Alimentos/métodos , Humanos , Espectrometria de Massas/instrumentação , Metabolômica/instrumentação
18.
Anal Chem ; 86(20): 10323-30, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25243401

RESUMO

In the field of bioanalysis, there is an increasing demand for miniaturized, automated, robust sample pretreatment procedures that can be easily connected to direct-infusion mass spectrometry (DI-MS) in order to allow the high-throughput screening of drugs and/or their metabolites in complex body fluids like plasma. Liquid-Liquid extraction (LLE) is a common sample pretreatment technique often used for complex aqueous samples in bioanalysis. Despite significant developments that have been made in automated and miniaturized LLE procedures, fully automated LLE techniques allowing high-throughput bioanalytical studies on small-volume samples using direct infusion mass spectrometry, have not been matured yet. Here, we introduce a new fully automated micro-LLE technique based on gas-pressure assisted mixing followed by passive phase separation, coupled online to nanoelectrospray-DI-MS. Our method was characterized by varying the gas flow and its duration through the solvent mixture. For evaluation of the analytical performance, four drugs were spiked to human plasma, resulting in highly acceptable precision (RSD down to 9%) and linearity (R(2) ranging from 0.990 to 0.998). We demonstrate that our new method does not only allow the reliable extraction of analytes from small sample volumes of a few microliters in an automated and high-throughput manner, but also performs comparable or better than conventional offline LLE, in which the handling of small volumes remains challenging. Finally, we demonstrate the applicability of our method for drug screening on dried blood spots showing excellent linearity (R(2) of 0.998) and precision (RSD of 9%). In conclusion, we present the proof of principe of a new high-throughput screening platform for bioanalysis based on a new automated microLLE method, coupled online to a commercially available nano-ESI-DI-MS.


Assuntos
Bioensaio/métodos , Cromatografia Líquida , Gases/química , Espectrometria de Massas , Pressão , Automação , Bioensaio/instrumentação , Teste em Amostras de Sangue Seco
19.
Anal Chem ; 86(13): 6479-86, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24873509

RESUMO

A flow-through microvial is used to interface capillary electrophoresis and mass spectrometry (CE-MS) to develop a method for simultaneous profiling both neutral and sialylated glycans without derivatization or labeling. The CE separation was performed at near-zero electroosmotic flow in a capillary with neutral, hydrophilic coating, using 50 mM ammonium acetate in 20% methanol (pH 3.1) as the background electrolyte. The method was optimized with reversed CE polarity and negative ion ESI-MS. Enzymatically released N-glycans from human immunoglobulin G (IgG) were used as the test sample. The approach was also used to study the more complex N-glycans from recombinant human erythropoietin (rHuEPO) expressed in Chinese hamster ovary (CHO) cells. Glycoscreening of rHuEPO was performed using a triple quadrupole MS and an ultrahigh resolution TOF-MS. The high sensitivity and high mass accuracy of the TOF-MS revealed the presence of more than 70 glycans. Three mono- and di-sialylated tetra-antennary N-glycans and one mono-sialylated tri-antennary N-glycan of rHuEPO are reported for the first time. Further glycan heterogeneity was identified of the highly sialylated N-glycans of rHuEPO by extensive acetylation, Neu5Ac/Neu5Gc variation and the presence of N-acetyl-lactosamine repeats. For comparative purposes, porous graphitic carbon-based LC-MS/MS was also used to glycoprofile rHuEPO. This work demonstrates the potential of CE-MS to provide a comprehensive glycosylation profile with detailed features of the secondary glycan modifications. The CE-MS based method eliminates the need to label the N-glycans, as well as the requirement to desialylate before analysis, and could complement other established techniques for glycan characterization of therapeutic glycoproteins.


Assuntos
Eletroforese Capilar/métodos , Eritropoetina/química , Glicoproteínas/química , Imunoglobulina G/química , Polissacarídeos/análise , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Proteínas Recombinantes/química , Espectrometria de Massas por Ionização por Electrospray/métodos
20.
Electrophoresis ; 35(1): 128-37, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24114847

RESUMO

This article presents an overview of the design and application of coupled SPE-CE systems that have been reported in the literature between January 2011 and June 2013. The present paper is an update of three previous review papers covering the years 2000-2011 (Electrophoresis 2008, 29, 108-128; Electrophoresis 2010, 31, 44-54; Electrophoresis 2012, 33, 243-250). The use of in-line and on-line SPE-CE approaches is described in this review. Emerging technological developments, such as the use of in-line frit-free SPE and chip-based SPE for extraction of sample components prior to CE analysis, are outlined. Selected examples illustrate the applicability of SPE-CE in biomedical, pharmaceutical, and environmental analysis. A complete overview of recent SPE-CE studies is given in table format, providing information on sample type, SPE sorbent, coupling mode, detection mode, and LOD. Finally, some general conclusions and future perspectives are provided.


Assuntos
Eletroforese Capilar , Extração em Fase Sólida , DNA/análise , Limite de Detecção , Peptídeos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA