Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(19): 3520-3532.e26, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36041435

RESUMO

We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6-12 residue macrocycles with a wide range of predicted structures containing noncanonical backbone modifications and experimentally determined structures of 35; 29 are very close to the computational models. With such control, we show that membrane permeability can be systematically achieved by ensuring all amide (NH) groups are engaged in internal hydrogen bonding interactions. 84 designs over the 6-12 residue size range cross membranes with an apparent permeability greater than 1 × 10-6 cm/s. Designs with exposed NH groups can be made membrane permeable through the design of an alternative isoenergetic fully hydrogen-bonded state favored in the lipid membrane. The ability to robustly design membrane-permeable and orally bioavailable peptides with high structural accuracy should contribute to the next generation of designed macrocycle therapeutics.


Assuntos
Amidas , Peptídeos , Amidas/química , Hidrogênio , Ligação de Hidrogênio , Lipídeos , Peptídeos/química
2.
Nature ; 600(7889): 547-552, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34853475

RESUMO

There has been considerable recent progress in protein structure prediction using deep neural networks to predict inter-residue distances from amino acid sequences1-3. Here we investigate whether the information captured by such networks is sufficiently rich to generate new folded proteins with sequences unrelated to those of the naturally occurring proteins used in training the models. We generate random amino acid sequences, and input them into the trRosetta structure prediction network to predict starting residue-residue distance maps, which, as expected, are quite featureless. We then carry out Monte Carlo sampling in amino acid sequence space, optimizing the contrast (Kullback-Leibler divergence) between the inter-residue distance distributions predicted by the network and background distributions averaged over all proteins. Optimization from different random starting points resulted in novel proteins spanning a wide range of sequences and predicted structures. We obtained synthetic genes encoding 129 of the network-'hallucinated' sequences, and expressed and purified the proteins in Escherichia coli; 27 of the proteins yielded monodisperse species with circular dichroism spectra consistent with the hallucinated structures. We determined the three-dimensional structures of three of the hallucinated proteins, two by X-ray crystallography and one by NMR, and these closely matched the hallucinated models. Thus, deep networks trained to predict native protein structures from their sequences can be inverted to design new proteins, and such networks and methods should contribute alongside traditional physics-based models to the de novo design of proteins with new functions.


Assuntos
Redes Neurais de Computação , Proteínas , Sequência de Aminoácidos , Cristalografia por Raios X , Alucinações , Humanos , Conformação Proteica , Proteínas/química , Proteínas/genética
3.
Mol Cell ; 53(2): 330-43, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24462206

RESUMO

While structural symmetry is a prevailing feature of homo-oligomeric proteins, asymmetry provides unique mechanistic opportunities. We present the crystal structure of full-length TRAP1, the mitochondrial Hsp90 molecular chaperone, in a catalytically active closed state. The TRAP1 homodimer adopts a distinct, asymmetric conformation, where one protomer is reconfigured via a helix swap at the middle:C-terminal domain (MD:CTD) interface. This interface plays a critical role in client binding. Solution methods validate the asymmetry and show extension to Hsp90 homologs. Point mutations that disrupt unique contacts at each MD:CTD interface reduce catalytic activity and substrate binding and demonstrate that each protomer needs access to both conformations. Crystallographic data on a dimeric NTD:MD fragment suggests that asymmetry arises from strain induced by simultaneous NTD and CTD dimerization. The observed asymmetry provides the potential for an additional step in the ATPase cycle, allowing sequential ATP hydrolysis steps to drive both client remodeling and client release.


Assuntos
Trifosfato de Adenosina/metabolismo , Fator 1 Associado a Receptor de TNF/química , Proteínas de Peixe-Zebra/química , Cristalografia por Raios X , Hidrólise , Estrutura Terciária de Proteína , Fator 1 Associado a Receptor de TNF/metabolismo , Fator 1 Associado a Receptor de TNF/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/fisiologia
4.
Nucleic Acids Res ; 48(1): 432-444, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31713614

RESUMO

SP_0782 from Streptococcus pneumoniae is a dimeric protein that potentially binds with single-stranded DNA (ssDNA) in a manner similar to human PC4, the prototype of PC4-like proteins, which plays roles in transcription and maintenance of genome stability. In a previous NMR study, SP_0782 exhibited an ssDNA-binding property different from YdbC, a prokaryotic PC4-like protein from Lactococcus lactis, but the underlying mechanism remains unclear. Here, we show that although SP_0782 adopts an overall fold similar to those of PC4 and YdbC, the ssDNA length occupied by SP_0782 is shorter than those occupied by PC4 and YdbC. SP_0782 exhibits varied binding patterns for different lengths of ssDNA, and tends to form large complexes with ssDNA in a potential high-density binding manner. The structures of SP_0782 complexed with different ssDNAs reveal that the varied binding patterns are associated with distinct capture of nucleotides in two major DNA-binding regions of SP_0782. Moreover, a comparison of known structures of PC4-like proteins complexed with ssDNA reveals a divergence in the binding interface between prokaryotic and eukaryotic PC4-like proteins. This study provides insights into the ssDNA-binding mechanism of PC4-like proteins, and benefits further study regarding the biological function of SP_0782, probably in DNA protection and natural transformation.


Assuntos
Proteínas de Bactérias/química , DNA Bacteriano/química , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Streptococcus pneumoniae/genética , Fatores de Transcrição/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Cinética , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Streptococcus pneumoniae/metabolismo , Termodinâmica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Proteins ; 88(1): 237-241, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31294849

RESUMO

Protein CGL2373 from Corynebacterium glutamicum was previously proposed to be a member of the polyketide_cyc2 family, based on amino-acid sequence and secondary structure features derived from NMR chemical shift assignments. We report here the solution NMR structure of CGL2373, which contains three α-helices and one antiparallel ß-sheet and adopts a helix-grip fold. This structure shows moderate similarities to the representative polyketide cyclases, TcmN, WhiE, and ZhuI. Nevertheless, unlike the structures of these homologs, CGL2373 structure looks like a half-open shell with a much larger pocket, and key residues in the representative polyketide cyclases for binding substrate and catalyzing aromatic ring formation are replaced with different residues in CGL2373. Also, the gene cluster where the CGL2373-encoding gene is located in C. glutamicum contains additional genes encoding nucleoside diphosphate kinase, folylpolyglutamate synthase, and valine-tRNA ligase, different from the typical gene cluster encoding polyketide cyclase in Streptomyces. Thus, although CGL2373 is structurally a polyketide cyclase-like protein, the function of CGL2373 may differ from the known polyketide cyclases and needs to be further investigated. The solution structure of CGL2373 lays a foundation for in silico ligand screening and binding site identifying in future functional study.


Assuntos
Proteínas de Bactérias/genética , Corynebacterium glutamicum/ultraestrutura , Complexos Multienzimáticos/ultraestrutura , Conformação Proteica , Sequência de Aminoácidos/genética , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação/genética , Corynebacterium glutamicum/química , Cristalografia por Raios X , Complexos Multienzimáticos/genética , Policetídeos/química , Policetídeos/metabolismo , Estrutura Secundária de Proteína , Streptomyces/genética
6.
Proteins ; 87(1): 91-95, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30368907

RESUMO

We report the solution nuclear magnetic resonance (NMR) structure of CHU_1110 from Cytophaga hutchinsonii. CHU_1110 contains three α-helices and one antiparallel ß-sheet, forming a large cavity in the center of the protein, which are consistent with the structural characteristics of AHSA1 protein family. This protein shows high structural similarities to the prokaryotic proteins RHE_CH02687 from Rhizobium etli and YndB from Bacillus subtilis, which can bind with flavinoids. Unlike these two homologs, CHU_1110 shows no obvious interaction with flavonoids in NMR titration experiments. In addition, no direct interaction has been observed between CHU_1110 and ATP, although many homologous sequences of CHU_1110 have been annotated as ATPase. Combining the analysis of structural similarity of CHU_1110 and genomic context of its encoding gene, we speculate that CHU_1110 may be involved in the stress response of bacteria to heavy metal ions, even though its specific biological functions that need to be further investigated.


Assuntos
Proteínas de Bactérias/química , Cytophaga/metabolismo , Metais , Chaperonas Moleculares/química , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Estresse Fisiológico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Modelos Moleculares
7.
Biochem Biophys Res Commun ; 516(4): 1190-1195, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31296381

RESUMO

Growth arrest specific 7 (Gas7) protein is a cytoskeleton regulator playing a crucial role in neural cell development and function, and has been implicated in Alzheimer disease, schizophrenia and cancers. In human, three Gas7 isoforms can be expressed from a single Gas7 gene, while only the longest isoform, hGas7c, possesses an SH3 domain at the N-terminus. To date, the structure and function of hGas7 SH3 domain are still unclear. Here, we reported the solution NMR structure of hGas7 SH3 domain (hGas7-SH3), which displays a typical SH3 ß-barrel fold comprising five ß-strands and one 310-helix. Structural and sequence comparison showed that hGas7-SH3 shares high similarity with Abl SH3 domain, which binds to a high-affinity proline-rich peptide P41 in a canonical SH3-ligand binding mode through two hydrophobic pockets and a specificity site in the RT-loop. However, unlike Abl-SH3, only six residues in the RT-loop and two residues adjacent to but not in the two hydrophobic pockets of hGas7-SH3 showed significant chemical shift perturbations in NMR titrations, suggesting a low affinity and a non-canonical binding mode of hGas7-SH3 for P41. Furthermore, four peptides selected from phage-displayed libraries also bound weakly to hGas7-SH3, and the binding region of hGas7-SH3 was mainly located in the RT-loop as well. The ligand identifications through structural similarity searching and peptide library screening in this study imply that although hGas7-SH3 adopts a typical SH3 fold, it probably possesses distinctive ligand-binding specificity.


Assuntos
Proteínas do Tecido Nervoso/química , Domínios de Homologia de src , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Ligantes , Modelos Moleculares , Proteínas do Tecido Nervoso/metabolismo , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Dobramento de Proteína , Alinhamento de Sequência
8.
Metab Eng ; 56: 111-119, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31550507

RESUMO

Psilocybin, the prodrug of the psychoactive molecule psilocin, has demonstrated promising results in clinical trials for the treatment of addiction, depression, and post-traumatic stress disorder. The development of a psilocybin production platform in a highly engineerable microbe could lead to rapid advances towards the bioproduction of psilocybin for use in ongoing clinical trials. Here, we present the development of a modular biosynthetic production platform in the model microbe, Escherichia coli. Efforts to optimize and improve pathway performance using multiple genetic optimization techniques were evaluated, resulting in a 32-fold improvement in psilocybin titer. Further enhancements to this genetically superior strain were achieved through fermentation optimization, ultimately resulting in a fed-batch fermentation study, with a production titer of 1.16 g/L of psilocybin. This is the highest psilocybin titer achieved to date from a recombinant organism and a significant step towards demonstrating the feasibility of industrial production of biologically-derived psilocybin.


Assuntos
Técnicas de Cultura Celular por Lotes , Escherichia coli , Engenharia Metabólica , Psilocibina , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Psilocibina/biossíntese , Psilocibina/genética
9.
Biochem Biophys Res Commun ; 496(2): 575-581, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29355528

RESUMO

Human protein TGIF1 is an essential regulator of cell fate with broad roles in different tissues, and has been implicated in holoprosencephaly (HPE) and many cancers. The function of TGIF1 in transcriptional regulation depends on its three-amino acid loop extension (TALE) type of homeodomain (HD). Two missense mutations that led to P192A and R219C substitutions in TGIF1-HD were previously found in HPE patients and suggested to be the causes for these cases. However, how these mutations affected TGIF1 function has not been investigated from a structural view. Here, we investigated the roles of P192 and R219 in TGIF1-HD structure packing through determining the NMR structure of TGIF1-HD. Surprisingly, P192 and R219 were found to play roles in packing α1 and α2 to α3 together with A190 and F215 through side-chain interactions. Circular dichroism (CD) showed that P192A and R219C mutants displayed structural change and less folding compared with wild-type TGIF1-HD, and 1H-15N HSQC spectrum of P192A mutant exhibited chemical shift perturbations in all three helices of TGIF1-HD. Thus, it is suggested that P192A and R219C mutations led to structure disturbances of TGIF1-HD, which subsequently reduced the DNA-binding affinity of TGIF1-HD by 23-fold and 10-fold respectively, as revealed by the isothermal titration calorimetry (ITC) experiments. Our study provides structural insights of the probable pathogenesis mechanism of two TGIF1-related HPE cases, and evidences for the roles of P192 and R219 in HD folding.


Assuntos
Holoprosencefalia/genética , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Mutação Puntual , Proteínas Repressoras/química , Proteínas Repressoras/genética , Sequência de Aminoácidos , DNA/metabolismo , Holoprosencefalia/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Modelos Moleculares , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Dobramento de Proteína , Proteínas Repressoras/metabolismo
10.
Arch Biochem Biophys ; 656: 31-37, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30165040

RESUMO

SH2 domain-containing inositol 5-phosphatase 2 (SHIP2) binds with the Y1356-phosphorylated hepatocyte growth factor (HGF) receptor, c-MET, through its SH2 domain, which is essential for the role of SHIP2 in HGF-induced cell scattering and cell spreading. Previously, the experimental structure of the SH2 domain from SHIP2 (SHIP2-SH2) had not been reported, and its interaction with the Y1356-phosphorylated c-MET had not been investigated from a structural point of view. In this study, the solution structure of SHIP2-SH2 was determined by NMR spectroscopy, where it was found to adopt a typical SH2-domain fold that contains a positively-charged pocket for binding to phosphotyrosine (pY). The interaction between SHIP2-SH2 and a pY-containing peptide from c-MET (Y1356 phosphorylated) was investigated through NMR titrations. The results showed that the binding affinity of SHIP2-SH2 with the phosphopeptide is at low micromolar level, and the binding interface consists of the positively-charged pocket and its surrounding regions. Furthermore, R28, S49 and R70 were identified as key residues for the binding and may directly interact with the pY. Taken together, these findings provide structural insights into the binding of SHIP2-SH2 with the Y1356-phosphorylated c-MET, and lay a foundation for further studies of the interactions between SHIP2-SH2 and its various binding partners.


Assuntos
Fragmentos de Peptídeos/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/química , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Fosfotirosina/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Domínios de Homologia de src , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Espectroscopia de Ressonância Magnética , Mutação , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Ligação Proteica , Alinhamento de Sequência , Domínios de Homologia de src/genética
11.
Proteins ; 85(5): 957-962, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28160313

RESUMO

Human INSM1 containing five C-terminal C2H2-type zinc fingers (ZFs), is a key regulator of neuroendocrine development. Previous research reported that full-length INSM1 containing all five ZFs recognized a consensus DNA sequence. Structure elucidation of human INSM1 ZFs is currently insufficient to understand the DNA binding mechanism. Herein, we present the solution NMR structure of ZF4-5, in which the two ZFs adopt a head-to-tail arrangement and each ZF features a canonical ßßα fold. NMR titrations and isothermal titration calorimetry experiments showed that ZF4-5 binds weakly to the consensus DNA sequence. Proteins 2017; 85:957-962. © 2016 Wiley Periodicals, Inc.


Assuntos
DNA/química , Proteínas Recombinantes de Fusão/química , Proteínas Repressoras/química , Dedos de Zinco , Sequência de Aminoácidos , Sítios de Ligação , Calorimetria/métodos , Clonagem Molecular , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica
12.
Proteins ; 85(5): 951-956, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28160315

RESUMO

We report the solution NMR structure of RHE_CH02687 from Rhizobium etli. Its structure consists of two ß-sheets that together with two short and one long α-helix form a hydrophobic cavity. This protein shows a high structural similarity to the prokaryotic protein YndB from Bacillus subtilis, and the eukaryotic protein Aha1. NMR titration experiments confirmed that RHE_CH02687, like its homolog YndB, interacted with flavonoids, giving support for a biological function as a flavonoid sensor in the symbiotic interaction between R. etli and plants. In addition, our study showed no evidence for a direct interaction between RHE_CH02687 and HtpG, the R. etli homolog of Hsp90. Proteins 2017; 85:951-956. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Bactérias/química , Flavonoides/química , Rhizobium etli/química , Sequência de Aminoácidos , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Flavonoides/metabolismo , Expressão Gênica , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ressonância Magnética Nuclear Biomolecular , Phaseolus/microbiologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhizobium etli/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Simbiose , Termodinâmica
13.
J Biomol NMR ; 68(3): 225-236, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28653216

RESUMO

A strategy for acquiring structural information from sparsely isotopically labeled large proteins is illustrated with an application to the E. coli heat-shock protein, HtpG (high temperature protein G), a 145 kDa dimer. It uses 13C-alanine methyl labeling in a perdeuterated background to take advantage of the sensitivity and resolution of Methyl-TROSY spectra, as well as the backbone-centered structural information from 1H-13C residual dipolar couplings (RDCs) of alanine methyl groups. In all, 40 of the 47 expected crosspeaks were resolved and 36 gave RDC data. Assignments of crosspeaks were partially achieved by transferring assignments from those made on individual domains using triple resonance methods. However, these were incomplete and in many cases the transfer was ambiguous. A genetic algorithm search for consistency between predictions based on domain structures and measurements for chemical shifts and RDCs allowed 60% of the 40 resolved crosspeaks to be assigned with confidence. Chemical shift changes of these crosspeaks on adding an ATP analog to the apo-protein are shown to be consistent with structural changes expected on comparing previous crystal structures for apo- and complex- structures. RDCs collected on the assigned alanine methyl peaks are used to generate a new solution model for the apo-protein structure.


Assuntos
Alanina/metabolismo , Isótopos de Carbono/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Coloração e Rotulagem , Metilação , Modelos Moleculares , Domínios Proteicos , Estrutura Secundária de Proteína
14.
J Virol ; 90(21): 9983-9996, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27558427

RESUMO

The P[19] genotype belongs to the P[II] genogroup of group A rotaviruses (RVs). However, unlike the other P[II] RVs, which mainly infect humans, P[19] RVs commonly infect animals (pigs), making P[19] unique for the study of RV diversity and host ranges. Through in vitro binding assays and saturation transfer difference (STD) nuclear magnetic resonance (NMR), we found that P[19] could bind mucin cores 2, 4, and 6, as well as type 1 histo-blood group antigens (HBGAs). The common sequences of these glycans serve as minimal binding units, while additional residues, such as the A, B, H, and Lewis epitopes of the type 1 HBGAs, can further define the binding outcomes and therefore likely the host ranges for P[19] RVs. This complex binding property of P[19] is shared with the other three P[II] RVs (P[4], P[6], and P[8]) in that all of them recognized the type 1 HBGA precursor, although P[4] and P[8], but not P[6], also bind to mucin cores. Moreover, while essential for P[4] and P[8] binding, the addition of the Lewis epitope blocked P[6] and P[19] binding to type 1 HBGAs. Chemical-shift NMR of P[19] VP8* identified a ligand binding interface that has shifted away from the known RV P-genotype binding sites but is conserved among all P[II] RVs and two P[I] RVs (P[10] and P[12]), suggesting an evolutionary connection among these human and animal RVs. Taken together, these data are important for hypotheses on potential mechanisms for RV diversity, host ranges, and cross-species transmission. IMPORTANCE: In this study, we found that our P[19] strain and other P[II] RVs recognize mucin cores and the type 1 HBGA precursors as the minimal functional units and that additional saccharides adjacent to these units can alter binding outcomes and thereby possibly host ranges. These data may help to explain why some P[II] RVs, such as P[6] and P[19], commonly infect animals but rarely humans, while others, such as the P[4] and P[8] RVs, mainly infect humans and are predominant over other P genotypes. Elucidation of the molecular bases for strain-specific host ranges and cross-species transmission of these human and animal RVs is important to understand RV epidemiology and disease burden, which may impact development of control and prevention strategies against RV gastroenteritis.


Assuntos
Polissacarídeos/genética , Infecções por Rotavirus/virologia , Rotavirus/genética , Animais , Sítios de Ligação/genética , Antígenos de Grupos Sanguíneos/genética , Epitopos/genética , Gastroenterite/virologia , Genótipo , Especificidade de Hospedeiro/genética , Humanos , Mucinas/genética , Ligação Proteica/genética , Suínos , Proteínas não Estruturais Virais/genética , Ligação Viral
15.
Sci Data ; 11(1): 30, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177162

RESUMO

Multidimensional NMR spectra are the basis for studying proteins by NMR spectroscopy and crucial for the development and evaluation of methods for biomolecular NMR data analysis. Nevertheless, in contrast to derived data such as chemical shift assignments in the BMRB and protein structures in the PDB databases, this primary data is in general not publicly archived. To change this unsatisfactory situation, we present a standardized set of solution NMR data comprising 1329 2-4-dimensional NMR spectra and associated reference (chemical shift assignments, structures) and derived (peak lists, restraints for structure calculation, etc.) annotations. With the 100-protein NMR spectra dataset that was originally compiled for the development of the ARTINA deep learning-based spectra analysis method, 100 protein structures can be reproduced from their original experimental data. The 100-protein NMR spectra dataset is expected to help the development of computational methods for NMR spectroscopy, in particular machine learning approaches, and enable consistent and objective comparisons of these methods.


Assuntos
Imageamento por Ressonância Magnética , Proteínas , Algoritmos , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química
16.
bioRxiv ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38328042

RESUMO

Biomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NMR exchange (NEF) and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints. Using these restraint formats, a standardized validation system for assessing structural models of biopolymers against restraints has been developed and implemented in the wwPDB OneDep data deposition-validation-biocuration system. The resulting wwPDB Restraint Violation Report provides a model vs. data assessment of biomolecule structures determined using distance and dihedral restraints, with extensions to other restraint types currently being implemented. These tools are useful for assessing NMR models, as well as for assessing biomolecular structure predictions based on distance restraints.

17.
Structure ; 32(6): 824-837.e1, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38490206

RESUMO

Biomolecular structure analysis from experimental NMR studies generally relies on restraints derived from a combination of experimental and knowledge-based data. A challenge for the structural biology community has been a lack of standards for representing these restraints, preventing the establishment of uniform methods of model-vs-data structure validation against restraints and limiting interoperability between restraint-based structure modeling programs. The NEF and NMR-STAR formats provide a standardized approach for representing commonly used NMR restraints. Using these restraint formats, a standardized validation system for assessing structural models of biopolymers against restraints has been developed and implemented in the wwPDB OneDep data deposition-validation-biocuration system. The resulting wwPDB restraint violation report provides a model vs. data assessment of biomolecule structures determined using distance and dihedral restraints, with extensions to other restraint types currently being implemented. These tools are useful for assessing NMR models, as well as for assessing biomolecular structure predictions based on distance restraints.


Assuntos
Bases de Dados de Proteínas , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Software
18.
J Biomol NMR ; 55(1): 47-58, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23180051

RESUMO

Here, we report novel methods to measure rate constants for homodimer subunit exchange using double electron-electron resonance (DEER) electron paramagnetic resonance spectroscopy measurements and nuclear magnetic resonance spectroscopy based paramagnetic relaxation enhancement (PRE) measurements. The techniques were demonstrated using the homodimeric protein Dsy0195 from the strictly anaerobic bacterium Desulfitobacterium hafniense Y51. At specific times following mixing site-specific MTSL-labeled Dsy0195 with uniformly (15)N-labeled Dsy0195, the extent of exchange was determined either by monitoring the decrease of MTSL-labeled homodimer from the decay of the DEER modulation depth or by quantifying the increase of MTSL-labeled/(15)N-labeled heterodimer using PREs. Repeated measurements at several time points following mixing enabled determination of the homodimer subunit dissociation rate constant, k (-1), which was 0.037 ± 0.005 min(-1) derived from DEER experiments with a corresponding half-life time of 18.7 min. These numbers agreed with independent measurements obtained from PRE experiments. These methods can be broadly applied to protein-protein and protein-DNA complex studies.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Ressonância Magnética Nuclear Biomolecular , Subunidades Proteicas/química , Proteínas/química , Algoritmos , Simulação por Computador , Multimerização Proteica
19.
Curr Opin Struct Biol ; 83: 102703, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37776602

RESUMO

Biomolecules exhibit dynamic behavior that single-state models of their structures cannot fully capture. We review some recent advances for investigating multiple conformations of biomolecules, including experimental methods, molecular dynamics simulations, and machine learning. We also address the challenges associated with representing single- and multiple-state models in data archives, with a particular focus on NMR structures. Establishing standardized representations and annotations will facilitate effective communication and understanding of these complex models to the broader scientific community.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Proteínas/química , Conformação Molecular , Espectroscopia de Ressonância Magnética , Conformação Proteica
20.
Curr Opin Struct Biol ; 80: 102603, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37178478

RESUMO

Membrane-traversing peptides offer opportunities for targeting intracellular proteins and oral delivery. Despite progress in understanding the mechanisms underlying membrane traversal in natural cell-permeable peptides, there are still several challenges to designing membrane-traversing peptides with diverse shapes and sizes. Conformational flexibility appears to be a key determinant of membrane permeability of large macrocycles. We review recent developments in the design and validation of chameleonic cyclic peptides, which can switch between alternative conformations to enable improved permeability through cell membranes, while still maintaining reasonable solubility and exposed polar functional groups for target protein binding. Finally, we discuss the principles, strategies, and practical considerations for rational design, discovery, and validation of permeable chameleonic peptides.


Assuntos
Lagartos , Peptídeos Cíclicos , Animais , Peptídeos Cíclicos/metabolismo , Lagartos/metabolismo , Peptídeos/química , Conformação Molecular , Permeabilidade da Membrana Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA