Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Blood ; 143(13): 1231-1241, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38145560

RESUMO

ABSTRACT: Despite newer targeted therapies, patients with primary refractory or relapsed (r/r) T-cell lymphoma have a poor prognosis. The development of chimeric antigen receptor (CAR) T-cell platforms to treat T-cell malignancies often requires additional gene modifications to overcome fratricide because of shared T-cell antigens on normal and malignant T cells. We developed a CD5-directed CAR that produces minimal fratricide by downmodulating CD5 protein levels in transduced T cells while retaining strong cytotoxicity against CD5+ malignant cells. In our first-in-human phase 1 study (NCT0308190), second-generation autologous CD5.CAR T cells were manufactured from patients with r/r T-cell malignancies. Here, we report safety and efficacy data from a cohort of patients with mature T-cell lymphoma (TCL). Among the 17 patients with TCL enrolled, CD5 CAR T cells were successfully manufactured for 13 out of 14 attempted lines (93%) and administered to 9 (69%) patients. The overall response rate (complete remission or partial response) was 44%, with complete responses observed in 2 patients. The most common grade 3 or higher adverse events were cytopenias. No grade 3 or higher cytokine release syndrome or neurologic events occurred. Two patients died during the immediate toxicity evaluation period due to rapidly progressive disease. These results demonstrated that CD5.CAR T cells are safe and can induce clinical responses in patients with r/r CD5-expressing TCLs without eliminating endogenous T cells or increasing infectious complications. More patients and longer follow-up are needed for validation. This trial was registered at www.clinicaltrials.gov as #NCT0308190.


Assuntos
Imunoterapia Adotiva , Linfoma de Células T , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Recidiva Local de Neoplasia/tratamento farmacológico , Linfócitos T , Doença Crônica , Linfoma de Células T/tratamento farmacológico , Antígenos CD19
2.
Blood ; 140(1): 16-24, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35325065

RESUMO

Subsequent malignancies are well-documented complications in long-term follow-up of cancer patients. Recently, genetically modified immune effector (IE) cells have shown benefit in hematologic malignancies and are being evaluated in clinical trials for solid tumors. Although the short-term complications of IE cells are well described, there is limited literature summarizing long-term follow-up, including subsequent malignancies. We retrospectively reviewed data from 340 patients treated across 27 investigator-initiated pediatric and adult clinical trials at our center. All patients received IE cells genetically modified with γ-retroviral vectors to treat relapsed and/or refractory hematologic or solid malignancies. In a cumulative 1027 years of long-term follow-up, 13 patients (3.8%) developed another cancer with a total of 16 events (4 hematologic malignancies and 12 solid tumors). The 5-year cumulative incidence of a first subsequent malignancy in the recipients of genetically modified IE cells was 3.6% (95% confidence interval, 1.8% to 6.4%). For 11 of the 16 subsequent tumors, biopsies were available, and no sample was transgene positive by polymerase chain reaction. Replication-competent retrovirus testing of peripheral blood mononuclear cells was negative in the 13 patients with subsequent malignancies tested. Rates of subsequent malignancy were low and comparable to standard chemotherapy. These results suggest that the administration of IE cells genetically modified with γ retroviral vectors does not increase the risk for subsequent malignancy.


Assuntos
Neoplasias Hematológicas , Neoplasias , Adulto , Criança , Seguimentos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Humanos , Leucócitos Mononucleares , Neoplasias/genética , Neoplasias/terapia , Estudos Retrospectivos
3.
Cytotherapy ; 26(3): 261-265, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38149948

RESUMO

Chimeric antigen receptor (CAR) T-cells are an emerging therapy for refractory lymphomas. Clonal hematopoiesis (CH), the preferential outgrowth of mutated bone marrow progenitors, is enriched in lymphoma patients receiving CAR-T cells. CAR-T therapy requires conditioning chemotherapy and often induces systemic inflammatory reactions, both of which have been shown to promote expansion of CH clones. Thus, we hypothesized that pre-existing CH clones could expand during CAR-T cell treatment. We measured CH at 154 timepoints longitudinally sampled from 26 patients receiving CD30.CAR-T therapy for CD30+ lymphomas on an investigational protocol (NCT02917083). Pre-treatment CH was present in 54% of individuals and did not correlate with survival outcomes or inflammatory toxicities. Longitudinal tracking of single clones in individual patients revealed distinct clone growth dynamics. Initially small clones, defined as VAF <1%, expanded following CAR-T administration, compared with relatively muted expansions of larger clones (3.37-fold vs. 1.20-fold, P = 0.0014). Matched clones were present at low magnitude in the infused CD30.CAR-T product for all CH cases but did not affect the product's immunophenotype or transduction efficiency. As cellular immunotherapies expand to become frontline treatments for hematological malignancies, our data indicates CAR-T recipients could be enriched for CH, and further longitudinal studies centered on CH complications in this population are warranted.


Assuntos
Linfoma , Receptores de Antígenos Quiméricos , Humanos , Hematopoiese Clonal , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Linfoma/terapia , Imunoterapia , Hematopoese/genética
4.
Cytotherapy ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38819365

RESUMO

BACKGROUND AIMS: The success of chimeric antigen receptor (CAR) T-cell therapy in treating B-cell malignancies has led to the evaluation of CAR T-cells targeting a variety of other malignancies. Although the efficacy of CAR T-cells is enhanced when administered post-lymphodepleting chemotherapy, this can trigger bone marrow suppression and sustained cytopenia after CD19.CAR T-cell therapy. Additionally, systemic inflammation associated with CAR T-cell activity may contribute to myelosuppression. Cytopenias, such as neutropenia and thrombocytopenia, elevate the risk of severe infections and bleeding, respectively. However, data on the incidence of prolonged cytopenias after immune effector therapy in the solid tumor context remain limited. OBJECTIVE: We compared the incidence of prolonged cytopenias after immune effector therapy including genetically modified T-cells, virus-specific T-cells (VSTs) and NKT-cells, as well non-gene-modified VSTs for leukemia, lymphoma, and solid tumors (ST) to identify associated risk factors. METHODS: A retrospective analysis was conducted of 112 pediatric and adult patients with relapsed and/or refractory cancers who received lymphodepleting chemotherapy followed by immune effector therapy. Patients treated with 13 distinct immune effector cell therapies through 11 single-center clinical trials and 2 commercial products over a 6-year period were categorized into 3 types of malignancies: leukemia, lymphoma and ST. We obtained baseline patient characteristics and adverse events data for each participant, and tracked neutrophil and platelet counts following lymphodepletion. RESULTS: Of 112 patients, 104 (92.9%) experienced cytopenias and 88 (79%) experienced severe cytopenias. Patients with leukemia experienced significantly longer durations of severe neutropenia (median duration of 14 days) compared with patients with lymphoma (7 days) or ST (11 days) (P = 0.002). Patients with leukemia also had a higher incidence of severe thrombocytopenia (74.1%), compared with lymphoma (46%, P = 0.03) and ST (14.3%, P < 0.0001). Prolonged cytopenias were significantly associated with disease type (63% of patients with leukemia, 44% of patients with lymphoma, and 22.9% of patients with ST, P = 0.006), prior hematopoietic stem cell transplant (HSCT) (66.7% with prior HSCT versus 38.3% without prior HSCT, P = 0.039), and development of immune effector cell-associated neurotoxicity syndrome (ICANS) (75% with ICANS versus 38% without ICANS, P = 0.027). There was no significant association between prolonged cytopenias and cytokine release syndrome. CONCLUSIONS: Immune effector recipients often experience significant cytopenias due to marrow suppression following lymphodepletion regardless of disease, but prolonged severe cytopenias are significantly less common after treatment of patients with lymphoma and solid tumors.

5.
Br J Haematol ; 202(4): 874-878, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37323051

RESUMO

Respiratory syncytial virus (RSV)-associated viral infections are a major public health problem affecting the immunologically naïve/compromised populations. Given the RSV-associated morbidity and the limited treatment options, we sought to characterize the cellular immune response to RSV to develop a targeted T cell therapy for off-the-shelf administration to immunocompromised individuals. Here we report on the immunological profiling, as well as manufacturing, characterization and antiviral properties of these RSV-targeted T cells. A randomized, phase 1/2 clinical trial evaluating their safety and activity in haematopoietic stem cell transplant recipients as an off-the-shelf multi-respiratory virus-directed product is currently underway (NCT04933968, https://clinicaltrials.gov).


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Humanos , Antivirais/uso terapêutico , Imunoterapia , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Linfócitos T
6.
Blood ; 137(19): 2585-2597, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33270816

RESUMO

Relapse after allogeneic hematopoietic stem cell transplantation (HCT) is the leading cause of death in patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Infusion of unselected donor lymphocytes (DLIs) enhances the graft-versus-leukemia (GVL) effect. However, because the infused lymphocytes are not selected for leukemia specificity, the GVL effect is often accompanied by life-threatening graft-versus-host disease (GVHD), related to the concurrent transfer of alloreactive lymphocytes. Thus, to minimize GVHD and maximize GVL, we selectively activated and expanded stem cell donor-derived T cells reactive to multiple antigens expressed by AML/MDS cells (PRAME, WT1, Survivin, and NY-ESO-1). Products that demonstrated leukemia antigen specificity were generated from 29 HCT donors. In contrast to DLIs, leukemia-specific T cells (mLSTs) selectively recognized and killed leukemia antigen-pulsed cells, with no activity against recipient's normal cells in vitro. We administered escalating doses of mLSTs (0.5 to 10 × 107 cells per square meter) to 25 trial enrollees, 17 with high risk of relapse and 8 with relapsed disease. Infusions were well tolerated with no grade >2 acute or extensive chronic GVHD seen. We observed antileukemia effects in vivo that translated into not-yet-reached median leukemia-free and overall survival at 1.9 years of follow-up and objective responses in the active disease cohort (1 complete response and 1 partial response). In summary, mLSTs are safe and promising for the prevention and treatment of AML/MDS after HCT. This trial is registered at www.clinicaltrials.com as #NCT02494167.


Assuntos
Efeito Enxerto vs Leucemia , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda/terapia , Transfusão de Linfócitos , Síndromes Mielodisplásicas/terapia , Terapia de Salvação , Linfócitos T/transplante , Adolescente , Adulto , Idoso , Aloenxertos , Antígenos de Neoplasias/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Terapia Combinada , Feminino , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Transfusão de Linfócitos/efeitos adversos , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/tratamento farmacológico , Recidiva , Especificidade do Receptor de Antígeno de Linfócitos T , Linfócitos T/imunologia , Doadores de Tecidos , Adulto Jovem
7.
PLoS Comput Biol ; 18(3): e1009883, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35303007

RESUMO

The human immune system consists of a highly intelligent network of billions of independent, self-organized cells that interact with each other. Machine learning (ML) is an artificial intelligence (AI) tool that automatically processes huge amounts of image data. Immunotherapies have revolutionized the treatment of blood cancer. Specifically, one such therapy involves engineering immune cells to express chimeric antigen receptors (CAR), which combine tumor antigen specificity with immune cell activation in a single receptor. To improve their efficacy and expand their applicability to solid tumors, scientists optimize different CARs with different modifications. However, predicting and ranking the efficacy of different "off-the-shelf" immune products (e.g., CAR or Bispecific T-cell Engager [BiTE]) and selection of clinical responders are challenging in clinical practice. Meanwhile, identifying the optimal CAR construct for a researcher to further develop a potential clinical application is limited by the current, time-consuming, costly, and labor-intensive conventional tools used to evaluate efficacy. Particularly, more than 30 years of immunological synapse (IS) research data demonstrate that T cell efficacy is not only controlled by the specificity and avidity of the tumor antigen and T cell interaction, but also it depends on a collective process, involving multiple adhesion and regulatory molecules, as well as tumor microenvironment, spatially and temporally organized at the IS formed by cytotoxic T lymphocytes (CTL) and natural killer (NK) cells. The optimal function of cytotoxic lymphocytes (including CTL and NK) depends on IS quality. Recognizing the inadequacy of conventional tools and the importance of IS in immune cell functions, we investigate a new strategy for assessing CAR-T efficacy by quantifying CAR IS quality using the glass-support planar lipid bilayer system combined with ML-based data analysis. Previous studies in our group show that CAR-T IS quality correlates with antitumor activities in vitro and in vivo. However, current manually quantified IS quality data analysis is time-consuming and labor-intensive with low accuracy, reproducibility, and repeatability. In this study, we develop a novel ML-based method to quantify thousands of CAR cell IS images with enhanced accuracy and speed. Specifically, we used artificial neural networks (ANN) to incorporate object detection into segmentation. The proposed ANN model extracts the most useful information to differentiate different IS datasets. The network output is flexible and produces bounding boxes, instance segmentation, contour outlines (borders), intensities of the borders, and segmentations without borders. Based on requirements, one or a combination of this information is used in statistical analysis. The ML-based automated algorithm quantified CAR-T IS data correlates with the clinical responder and non-responder treated with Kappa-CAR-T cells directly from patients. The results suggest that CAR cell IS quality can be used as a potential composite biomarker and correlates with antitumor activities in patients, which is sufficiently discriminative to further test the CAR IS quality as a clinical biomarker to predict response to CAR immunotherapy in cancer. For translational research, the method developed here can also provide guidelines for designing and optimizing numerous CAR constructs for potential clinical development. Trial Registration: ClinicalTrials.gov NCT00881920.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Antígenos de Neoplasias/metabolismo , Inteligência Artificial , Biomarcadores/metabolismo , Humanos , Sinapses Imunológicas/metabolismo , Aprendizado de Máquina , Neoplasias/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Reprodutibilidade dos Testes , Microambiente Tumoral
8.
Artigo em Inglês | MEDLINE | ID: mdl-37119961

RESUMO

Cetaceans exhibit physiological adaptations that allowed the transition to aquatic life, including a robust antioxidant defense system that prevents injury from repeated exposure to ischemia/reperfusion events associated with breath-hold diving. The signaling cascades that characterize ischemic inflammation in humans are well characterized. In contrast, cetaceans' molecular and biochemical mechanisms that confer tolerance to inflammatory events are poorly understood. Heme oxygenase (HO) is a cytoprotective protein with anti-inflammatory properties. HO catalyzes the first step in the oxidative degradation of heme. The inducible HO-1 isoform is regulated by various stimuli, including hypoxia, oxidant stress, and inflammatory cytokines. The objective of this study was to compare the response of HO-1 and cytokines to a proinflammatory challenge in leukocytes isolated from humans and bottlenose dolphins (Tursiops truncatus). We measured changes in HO activity, and abundance and expression of interleukin 1 beta (IL-1ß), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and heme oxygenase 1 (HMOX1) in leukocytes treated with lipopolysaccharide (LPS) for 24 and 48 h. HO activity increased (p < 0.05) in dolphin (48 h) but not human cells. TNF-α expression increased in human (24 h, 48 h), but not dolphin cells following LPS stimulation. LPS-induced cytokine expression was lower in dolphin than in human leukocytes, suggesting a blunted cytokine response in bottlenose dolphin leukocytes treated with LPS. Results suggest species-specific regulation of inflammatory cytokines in leukocytes treated with LPS, which may lead to differential responses to a pro-inflammatory challenge between marine and terrestrial mammals.


Assuntos
Citocinas , Golfinhos , Humanos , Animais , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Golfinhos/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Interleucina-6/metabolismo , Leucócitos/metabolismo
9.
An Acad Bras Cienc ; 95(suppl 2): e20221010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38126435

RESUMO

Feline herpesvirus type 1 (HVF-1) is the infectious agent of feline viral rhinotracheitis. The main clinical signs are cough, nasal and eye discharge, fever, conjunctivitis and sneezing. Although the occurrence of the virus is known in some regions of Brazil, in Campo Grande, Mato Grosso do Sul (MS), there is no epidemiological information about its frequency. Thus, this study aimed to determine the frequency of feline herpesvirus type 1 in the region, and to evaluate its possible association with clinical and epidemiological factors. Ocular, nasal and oropharyngeal swabs, and blood were collected from 152 animals and analyzed through PCR and sequencing. In addition, epidemiological and clinical data were obtained through clinical examination and anamnesis. FHV-1 was detected in samples from 84 (55.26%) animals. There was no association between infection and age or sex. However, there was a significant association between infection and nasal (p < 0.0001) and ocular (p = 0.014) discharge and sneezing (p = 0.001). The results demonstrate the occurrence of the virus in domestic cats in the region with a high frequency of infection. Thus, FHV-1 should be considered as a potential causal agent of upper respiratory tract disease in domestic cats from Campo Grande, MS, Brazil.


Assuntos
Infecções por Herpesviridae , Varicellovirus , Animais , Gatos , Brasil/epidemiologia , Espirro , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/veterinária
10.
Curr Treat Options Oncol ; 21(3): 21, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32048071

RESUMO

OPINION STATEMENT: Cellular immunotherapy has been rapidly evolving and increasingly utilized in the management of relapsed and refractory lymphoma. CD19-specific chimeric antigen receptor T cells (CARTs) have achieved impressive results in pivotal clinical trials. Although CART development continues, these products have fundamental limitations that may make them less desirable in particular settings. For example, CARTs can only target cell surface antigens and thus are incapable of targeting intracellular tumor-associated proteins. In contrast to CARTs, conventional T cell receptors (TCR) allow T cells to target any cellular antigen, including intracellular proteins, since they interact with peptides presented by MHC I and II molecules. T cells recognizing EBV antigens through native TCRs have been successfully employed for treatment and prophylaxis of EBV-associated lymphomas, including post-transplant lymphoproliferative disorder. Currently, transgenic TCR-transduced T cells targeting nonviral tumor antigens remain experimental but, if successful, could become an invaluable cellular therapy option. Because the manufacturing process of autologous T cell products, including CARTs and other tumor-specific T cells, takes several weeks, patients often need bridging therapy to maintain disease control, which may be challenging. Novel cellular platforms, such as genetically modified NK and NKT cells, may be amenable to allogeneic use and thus may allow production as a readily available, "off-the-shelf" product. As cellular therapies beyond CART continue to grow, available therapeutic options for relapsed and refractory lymphoma patients are expected to expand further.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Imunoterapia , Linfoma/terapia , Animais , Antígenos de Neoplasias/imunologia , Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Engenharia Genética , Humanos , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Imunoterapia Adotiva , Linfoma/diagnóstico , Linfoma/etiologia , Linfoma/mortalidade , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
11.
Mol Ther ; 27(1): 272-280, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30391141

RESUMO

Chimeric antigen receptor (CAR) T cell therapy for the treatment of acute myeloid leukemia (AML) has the risk of toxicity to normal myeloid cells. CD7 is expressed by the leukemic blasts and malignant progenitor cells of approximately 30% of AML patients but is absent on normal myeloid and erythroid cells. Since CD7 expression by malignant blasts is also linked with chemoresistance and poor outcomes, targeting this antigen may be beneficial for this subset of AML patients. Here, we show that expression of a CD7-directed CAR in CD7 gene-edited (CD7KO) T cells effectively eliminates CD7+ AML cell lines, primary CD7+ AML, and colony-forming cells but spares myeloid and erythroid progenitor cells and their progeny. In a xenograft model, CD7 CAR T cells protect mice against systemic leukemia, prolonging survival. Our results support the feasibility of using CD7KO CD7 CAR T cells for the non-myeloablative treatment of CD7+ AML.


Assuntos
Imunoterapia Adotiva/métodos , Leucemia Mieloide Aguda/terapia , Animais , Antígenos CD7/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Camundongos , Células Mieloides/metabolismo , Linfócitos T/metabolismo
12.
Mol Ther ; 26(12): 2727-2737, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30309819

RESUMO

Second-generation (2G) chimeric antigen receptors (CARs) targeting CD19 are highly active against B cell malignancies, but it is unknown whether any of the costimulatory domains incorporated in the CAR have superior activity to others. Because CD28 and 4-1BB signaling activate different pathways, combining them in a single third-generation (3G) CAR may overcome the limitations of each individual costimulatory domain. We designed a clinical trial in which two autologous CD19-specific CAR-transduced T cell products (CD19.CARTs), 2G (with CD28 only) and 3G (CD28 and 4-1BB), were infused simultaneously in 16 patients with relapsed or refractory non-Hodgkin's lymphoma. 3G CD19.CARTs had superior expansion and longer persistence than 2G CD19.CARTs. This difference was most striking in the five patients with low disease burden and few circulating normal B cells, in whom 2G CD19.CARTs had limited expansion and persistence and correspondingly reduced area under the curve. Of the 11 patients with measurable disease, three achieved complete responses and three had partial responses. Cytokine release syndrome occurred in six patients but was mild, and no patient required anti-IL-6 therapy. Hence, 3G CD19.CARTs combining 4-1BB with CD28 produce superior CART expansion and may be of particular value when treating low disease burden in patients whose normal B cells are depleted by prior therapy.


Assuntos
Antígenos CD19/imunologia , Imunoterapia Adotiva , Linfoma não Hodgkin/imunologia , Linfoma não Hodgkin/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Idoso , Terapia Combinada , Feminino , Transplante de Células-Tronco Hematopoéticas , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Linfoma não Hodgkin/diagnóstico , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos T/metabolismo , Transplante Autólogo , Resultado do Tratamento
13.
Annu Rev Med ; 67: 165-83, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26332003

RESUMO

Lymphomas arise from clonal expansions of B, T, or NK cells at different stages of differentiation. Because they occur in the immunocyte-rich lymphoid tissues, they are easily accessible to antibodies and cell-based immunotherapy. Expressing chimeric antigen receptors (CARs) on T cells is a means of combining the antigen-binding site of a monoclonal antibody with the activating machinery of a T cell, enabling antigen recognition independent of major histocompatibility complex restriction, while retaining the desirable antitumor properties of a T cell. Here, we discuss the basic design of CARs and their potential advantages and disadvantages over other immune therapies for lymphomas. We review current clinical trials in the field and consider strategies to improve the in vivo function and safety of immune cells expressing CARs. The ultimate driver of CAR development and implementation for lymphoma will be the demonstration of their ability to safely and cost-effectively cure these malignancies.


Assuntos
Antígenos CD/imunologia , Doença de Hodgkin/terapia , Imunoterapia Adotiva/métodos , Linfoma não Hodgkin/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Epitopos , Técnicas de Transferência de Genes , Humanos , Receptores de Antígenos de Linfócitos T/genética
14.
Clin Adv Hematol Oncol ; 16(5): 375-386, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29851933

RESUMO

Resistance to conventional lines of therapy develops in approximately 20% of all patients with lymphoma. These patients have a dismal prognosis, with an expected median survival of 6.3 months. In recent years, T-cell immunotherapy has demonstrated a remarkable capacity to induce complete and durable clinical responses in patients with chemotherapy-refractory lymphoma. A major contributor to the success of immunotherapy has been the advent of genetic engineering technologies that introduce a chimeric antigen receptor (CAR) into T cells to focus their killing activity on tumor cells. The adoptive transfer of autologous CAR T-cell products specific for the pan-B-cell antigen CD19 have now received approval from the US Food and Drug Administration (FDA) for the treatment of relapsed or chemotherapy-resistant B-cell non-Hodgkin lymphoma. This review is designed to showcase the clinical efficacy and unique toxicities of individually developed CAR T-cell products for the treatment of lymphomas and their evolution from the laboratory bench to commercialization.


Assuntos
Antígenos CD19/imunologia , Imunoterapia Adotiva/métodos , Linfoma não Hodgkin/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Recombinantes de Fusão/imunologia , Linfócitos T Citotóxicos/imunologia , Antígenos CD19/genética , Antineoplásicos/uso terapêutico , Ensaios Clínicos como Assunto , Resistencia a Medicamentos Antineoplásicos/imunologia , Vetores Genéticos/imunologia , Vetores Genéticos/metabolismo , Humanos , Lentivirus/genética , Lentivirus/imunologia , Linfoma não Hodgkin/diagnóstico , Linfoma não Hodgkin/imunologia , Linfoma não Hodgkin/mortalidade , Plasmídeos/imunologia , Plasmídeos/metabolismo , Prognóstico , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/genética , Análise de Sobrevida , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/transplante , Resultado do Tratamento
15.
Blood ; 125(25): 3905-16, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25940712

RESUMO

Although T cells expressing CD19-specific chimeric antigen receptors (CARs) are a promising new therapy for B-cell malignancies, objective responses are observed at lower frequencies in patients with lymphoma than in those with acute B-cell leukemia. We postulated that the tumor microenvironment suppresses CAR-expressing T cells (CARTs) through the activity of indoleamine 2,3-dioxygenase (IDO), an intracellular enzyme that converts tryptophan into metabolites that inhibit T -: cell activity. To investigate the effects of tumor IDO on CD19-CART therapy, we used a xenograft lymphoma model expressing IDO as a transgene. CD19-CARTs inhibited IDO-negative tumor growth but had no effect on IDO-positive tumors. An IDO inhibitor (1-methyl-tryptophan) restored IDO-positive tumor control. Moreover, tryptophan metabolites inhibited interleukin (IL)-2-, IL-7-, and IL-15-dependent expansion of CARTs; diminished their proliferation, cytotoxicity, and cytokine secretion in vitro in response to CD19 recognition; and increased their apoptosis. Inhibition of CD19-CARTs was not mitigated by the incorporation of costimulatory domains, such as 4-1BB, into the CD19-CAR. Finally, we found that fludarabine and cyclophosphamide, frequently used before CART administration, downregulated IDO expression in lymphoma cells and improved the antitumor activity of CD19-CART in vivo. Because tumor IDO inhibits CD19-CARTs, antagonizing this enzyme may benefit CD19-CART therapy.


Assuntos
Antígenos CD19/imunologia , Imunoterapia/métodos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Linfoma/enzimologia , Linfoma/imunologia , Linfócitos T/imunologia , Animais , Antineoplásicos/farmacologia , Western Blotting , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Ciclofosfamida/farmacologia , Modelos Animais de Doenças , Regulação para Baixo , Citometria de Fluxo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/efeitos dos fármacos , Camundongos , Camundongos SCID , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Recombinantes de Fusão , Linfócitos T/efeitos dos fármacos , Vidarabina/análogos & derivados , Vidarabina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Lasers Med Sci ; 32(5): 1081-1088, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28429192

RESUMO

The use of eosin methylene blue according to Giemsa as photosensitizer is presented for the first time in this paper. The present study evaluated the potential application of chlorophyllin sodium copper salt (CuChlNa) and eosin methylene blue according to Giemsa (EMB) as antimicrobial photosensitizers (aPS) for photodynamic inactivation (PDI) of Staphylococcus aureus (gram-positive) and Escherichia coli (gram-negative) bacteria. The experiments were performed using S. aureus stain ATCC 25923 and E. coli ATCC 25922 in which five aPS concentrations (0.0, 1.0, 2.5, 5.0, 10.0, and 20.0 µM for S. aureus and 0.0, 5.0, 10.0, 20.0, 40.0, and 50.0 µM for E. coli) were prepared and added in 2 mL of a saline solution containing the bacterial inoculum. After aPS incubation, the samples were divided into two groups, one kept in the dark and another submitted to the illumination. Then, the bacterial inactivation was determined 18 h after the incubation at 37 °C by counting the colony-forming units (CFU). The results revealed that both EMB and CuChlNa can be used as aPS for the photoinactivation of S. aureus, while only EMB was able to photoinactivate E. coli. Nevertheless, a more complex experimental setup was needed for photoinactivation of E. coli. The data showed that EMB and CuChlNa presented similar photoinactivation effects on S. aureus, in which bacterial growth was completely inhibited at photosensitizer (PS) concentrations over 5 µM, when samples were previously incubated for 30 min and irradiated by a light dose of 30 J cm-2 as a result of an illumination of 1 h at 8.3 mW cm-2 by using a red light at 625 nm with a 1 cm beam diameter and output power of 6.5 mW. In the case of E. coli, bacterial growth was completely inhibited only when combining a PS incubation period of 120 min with concentrations over 20 µM.


Assuntos
Clorofilídeos/farmacologia , Amarelo de Eosina-(YS)/farmacologia , Escherichia coli/efeitos da radiação , Luz , Azul de Metileno/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Staphylococcus aureus/efeitos da radiação , Animais , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Camundongos , Células NIH 3T3 , Fármacos Fotossensibilizantes/farmacologia , Análise Espectral , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
17.
Blood ; 123(24): 3750-9, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24782509

RESUMO

Adoptive transfer of T lymphocytes expressing a CD19-specific chimeric antigen receptor (CAR.CD19) induces complete tumor regression in patients with lymphoid malignancies. Although in vivo persistence of CAR-T cells correlates with clinical responses, it remains unknown whether specific cell subsets within the CAR-T-cell product correlate with their subsequent in vivo expansion and persistence. We analyzed 14 patients with B-cell malignancies infused with autologous CAR.CD19-redirected T cells expanded ex vivo using IL-2, and found that their in vivo expansion only correlated with the frequency within the infused product of a CD8(+)CD45RA(+)CCR7(+) subset, whose phenotype is closest to "T-memory stem cells." Preclinical models showed that increasing the frequency of CD8(+)CD45RA(+)CCR7(+) CAR-T cells in the infused line by culturing the cells with IL-7 and IL-15 produced greater antitumor activity of CAR-T cells mediated by increased resistance to cell death, following repetitive encounters with the antigen, while preserving their migration to secondary lymphoid organs. This trial was registered at www.clinicaltrials.gov as #NCT00586391 and #NCT00709033.


Assuntos
Células-Tronco Adultas/fisiologia , Antígenos CD19/genética , Memória Imunológica , Interleucina-15/farmacologia , Interleucina-7/farmacologia , Linfoma/terapia , Linfócitos T/fisiologia , Transferência Adotiva/métodos , Células-Tronco Adultas/efeitos dos fármacos , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/transplante , Animais , Antígenos CD19/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Terapia Genética/métodos , Humanos , Ativação Linfocitária/efeitos dos fármacos , Linfoma/genética , Linfoma/imunologia , Camundongos , Camundongos SCID , Camundongos Transgênicos , Receptores de Antígenos/genética , Receptores de Antígenos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/transplante
18.
Opt Lett ; 41(13): 3013-6, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27367089

RESUMO

Surface grating couplers enable efficient coupling of light between optical fibers and nanophotonic waveguides. However, in conventional grating couplers, the radiation angle is intrinsically wavelength dependent, thereby limiting their operation bandwidth. In this Letter, we present a zero-order surface grating coupler in silicon-on-insulator which overcomes this limitation by operating in the subwavelength regime. By engineering the effective refractive index of the grating region, both high coupling efficiency and broadband operation bandwidth are achieved. The grating is assisted by a silicon prism on top of the waveguide, which favors upward radiation and minimizes power losses to substrate. Using a linear apodization, our design achieves a coupling efficiency of 91% (-0.41 dB) and a 1-dB bandwidth of 126 nm.

19.
Am J Physiol Heart Circ Physiol ; 308(7): H749-58, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25617357

RESUMO

AMP kinase (AMPK) plays an important role in the regulation of energy metabolism in cardiac cells. Furthermore, activation of AMPK protects the heart from myocardial infarction and heart failure. The present study examines whether or not AMPK affects the peroxisome proliferator-activated receptor-α (PPARα)/mitochondria pathway in response to acute oxidative stress in cultured cardiomyocytes. Cultured H9c2 rat embryonic cardioblasts were exposed to H2O2-induced acute oxidative stress in the presence or absence of metformin, compound C (AMPK inhibitor), GW6471 (PPARα inhibitor), or A-769662 (AMPK activator). Results showed that AMPK activation by metformin reverted oxidative stress-induced inactivation of AMPK and prevented oxidative stress-induced cell death. In addition, metformin attenuated reactive oxygen species generation and depolarization of the inner mitochondrial membrane. The antioxidative effects of metformin were associated with the prevention of mitochondrial DNA damage in cardiomyocytes. Coimmunoprecipitation studies revealed that metformin abolished oxidative stress-induced physical interactions between PPARα and cyclophilin D (CypD), and the abolishment of these interactions was associated with inhibition of permeability transition pore formation. The beneficial effects of metformin were not due to acetylation or phosphorylation of PPARα in response to oxidative stress. In conclusion, this study demonstrates that the protective effects of metformin-induced AMPK activation against oxidative stress converge on mitochondria and are mediated, at least in part, through the dissociation of PPARα-CypD interactions, independent of phosphorylation and acetylation of PPARα and CypD.


Assuntos
Adenilato Quinase/metabolismo , Antioxidantes/farmacologia , Ciclofilinas/metabolismo , Ativadores de Enzimas/farmacologia , Metformina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , PPAR alfa/metabolismo , Adenilato Quinase/antagonistas & inibidores , Animais , Compostos de Bifenilo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Ativação Enzimática , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/enzimologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Oxidantes/farmacologia , PPAR alfa/antagonistas & inibidores , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Pironas/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiofenos/farmacologia
20.
Mol Carcinog ; 54(10): 1220-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25111947

RESUMO

DNA repair is a key mechanism in maintaining genomic stability: repair deficiencies increase DNA damage and mutations that lead to several diseases, including cancer. We extracted DNA from peripheral blood mononuclear cells (PBMCs) of 48 pancreatic adenocarcinoma cases and 48 healthy controls to determine relative levels of nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) damage by QPCR. All participants were never smokers and between the ages of 60 and 69. Average levels among cases were compared to controls using a rank sum test, and logistic regression adjusted for potential confounding factors (age, sex, and diabetes mellitus). Cases had less DNA damage, with a significant decrease in mtDNA damage (P-value = 0.03) and a borderline significant decrease in nDNA damage (P = 0.08). Across samples, we found mtDNA abundance was higher among non-diabetics compared to diabetics (P = 0.04). Our results suggest that patients with pancreatic adenocarcinoma have less DNA damage in their PBMCs, and that having diabetes, a known pancreatic cancer risk factor, is associated with lower levels of mtDNA abundance.


Assuntos
Dano ao DNA/genética , Leucócitos Mononucleares/metabolismo , Neoplasias Pancreáticas/genética , Adenocarcinoma/genética , Idoso , Reparo do DNA/genética , DNA Mitocondrial/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA