Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta ; 253(1): 6, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33387077

RESUMO

MAIN CONCLUSION: AFM, profilometry and SEM measurements on both sides of the Anacardium occidentale L. leaf reveal that ultrastructure presented some singularities due to their different morphologies and roughness. The advanced stereometry and power spectrum density of both sides of the Anacardium occidentale L. leaf were carefully studied. We use three different microscopy techniques such as scanning electron microscopy, profilometry, and atomic force microscopy for a complete description of the leaf surface morphology. The morphology of the adaxial and abaxial sides revealed a surface composed of striated cuticles and stomata cells, respectively. The height parameters obtained by profilometry revealed that the abaxial side was rougher. However, both sides presented similar Gaussian height distribution and asymmetry. The advanced stereometric parameters obtained by the topographic maps of AFM revealed that the two sides have some singularities due to their different morphologies and roughness, but with similar microtextures. However, average PSD spectra showed that adaxial and abaxial sides are dominated by relatively low and high spatial frequencies, showing that the microtextures, unlike what was shown in stereometric parameters, are different. These results revealed that leaves surface morphology under different aspects and scales and the quantitative parameters confirmed the different spatial patterns displayed, which can be of great interest for the study of the biological behavior of plants from their leaves.


Assuntos
Anacardium , Folhas de Planta , Anacardium/química , Anacardium/ultraestrutura , Microscopia Eletrônica de Varredura , Folhas de Planta/química , Folhas de Planta/ultraestrutura , Floresta Úmida , Análise Espectral
2.
Microscopy (Oxf) ; 73(1): 55-65, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37540558

RESUMO

We conducted a comprehensive analysis of the surface microtexture of kefir biofilms grown on Theobroma grandiflorum Shum (cupuaçu) juice using atomic force microscopy. Our goal was to investigate the unique monofractal and multifractal spatial patterns of these biofilms to complement the existing limited literature. The biofilms were prepared dispersing four different concentrations of kefir grains in cupuaçu juice. Our morphological analysis showed that the surface of the obtained biofilms is essentially formed by the presence of cupuaçu fibers and microorganisms like lactobacilli and yeast. The topographic height-based parameter analysis reveals that there is a dependence between surface roughness and the concentration of kefir grains used. The strongly anisotropic well-centralized topographical height distribution of the biofilms also exhibited a quasi-symmetrical and platykurtic pattern. The biofilms exhibit comparable levels of spatial complexity, surface percolation and surface homogeneity, which can be attributed to their similar topographic uniformity. This aspect was further supported by the presence of similar multifractality in the biofilms, suggesting that despite their varying topographic roughness, their vertical growth dynamics follow a similar pattern. Our findings demonstrate that the surface roughness of kefir biofilms cultivated on cupuaçu juice is influenced by the concentration of kefir grains in the precursor solution. However, this dependence follows a consistent pattern across different concentrations. Graphical Abstract.


Assuntos
Kefir , Biofilmes , Lactobacillus , Saccharomyces cerevisiae
3.
Materials (Basel) ; 17(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38399069

RESUMO

Blast furnace dust waste (BFDW) proved efficient as a photocatalyst for the decolorization of methylene blue (MB) dye in water. Structural analysis unequivocally identified α-Fe2O3 as the predominant phase, constituting approximately 92%, with a porous surface showcasing unique 10-30 nm agglomerated nanoparticles. Chemical and thermal analyses indicated surface-bound water and carbonate molecules, with the main phase's thermal stability up to 900 °C. Electrical conductivity analysis revealed charge transfer resistance values of 616.4 Ω and electrode resistance of 47.8 Ω. The Mott-Schottky analysis identified α-Fe2O3 as an n-type semiconductor with a flat band potential of 0.181 V vs. Ag/AgCl and a donor density of 1.45 × 1015 cm-3. The 2.2 eV optical bandgap and luminescence stem from α-Fe2O3 and weak ferromagnetism arises from structural defects and surface effects. With a 74% photocatalytic efficiency, stable through three photodegradation cycles, BFDW outperforms comparable waste materials in MB degradation mediated by visible light. The elemental trapping experiment exposed hydroxyl radicals (OH•) and superoxide anions (O2-•) as the primary species in the photodegradation process. Consequently, iron oxide-based BFDW emerges as an environmentally friendly alternative for wastewater treatment, underscoring the pivotal role of its unique physical properties in the photocatalytic process.

4.
Micron ; 142: 102996, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33360436

RESUMO

We performed qualitative and quantitative analysis of surfaces of kefir biofilms loaded with Amazon rainforest fruit extract. Scanning electron microscopy and atomic force microscopy were used to evaluate the micromorphology of the biofilms. The films surface displayed a lower density of microorganisms (∼ 0.061 microorganisms/µm2) for the lowest concentration of fruit extract, however, a greater density (∼0.220 microorganisms/µm2) was observed for the higher concentration. Height stereometric parameters revealed that the biofilms with the highest concentration presented the highest roughness. However, almost all the stereometric parameters related to texture showed no significant difference. Furthermore, the Hurst coefficients of the average power spectrum density were similar for all biofilms. Fractal parameters confirmed that higher concentrations of fruit extract induced a superior topographic irregularity. However, fractal lacunarity does not show any significant difference confirming the similarity of the microtextures. Moreover, fractal succolarity and surface entropy exhibited values that suggested ideal percolation and strong topographic uniformity, respectively, indicating that these films can uniformly adhere to other surfaces. Our results confirm that the stereometric and fractal parameters can be relevant for the surface characterization of microbial films, which can be of great importance to the biomedical field.


Assuntos
Biofilmes/crescimento & desenvolvimento , Kefir/microbiologia , Extratos Vegetais , Fenômenos Fisiológicos Bacterianos , Cacau/química , Fractais , Frutas/química , Imageamento Tridimensional , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Extratos Vegetais/química , Floresta Úmida , Propriedades de Superfície
5.
Micron ; 137: 102912, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32585567

RESUMO

In this work, an advanced analysis of the 3D surface microtexture of the microbial films grown on Kefir loaded with Açaí extract was performed. Atomic force microscopy was used to characterize the 3D surface microtexture data in correlation with the stereometric analyses to allow a better understanding of the surface micromorphology consistent with ISO 25178-2: 2012. Two new parameters, fractal succolarity and fractal lacunarity, have been inserted for a quantitative approach to microtexture. The results revealed that the morphology was affected by the increase of the Açaí concentration in biofilms, as well as the fractal succolarity and lacunarity. Adhesive bacteria of the genus Lactobacillus were observed for the lowest concentrations of Açaí. Moreover, it was found that the surface of the biofilms has shown saturation when the concentration has changed from 4 to 6 % of Açaí. These results are of great interest in the characterization of surfaces with promising application like skin dressing.


Assuntos
Biofilmes , Euterpe/química , Kefir/microbiologia , Microscopia de Força Atômica/métodos , Fractais , Sucos de Frutas e Vegetais , Imageamento Tridimensional , Kefir/análise , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA