Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Osteoarthritis Cartilage ; 32(4): 385-397, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38049029

RESUMO

OBJECTIVE: Osteoarthritis (OA) is a complex disease involving contributions from both local joint tissues and systemic sources. Patient characteristics, encompassing sociodemographic and clinical variables, are intricately linked with OA rendering its understanding challenging. Technological advancements have allowed for a comprehensive analysis of transcripts, proteomes and metabolomes in OA tissues/fluids through omic analyses. The objective of this review is to highlight the advancements achieved by omic studies in enhancing our understanding of OA pathogenesis over the last three decades. DESIGN: We conducted an extensive literature search focusing on transcriptomics, proteomics and metabolomics within the context of OA. Specifically, we explore how these technologies have identified individual transcripts, proteins, and metabolites, as well as distinctive endotype signatures from various body tissues or fluids of OA patients, including insights at the single-cell level, to advance our understanding of this highly complex disease. RESULTS: Omic studies reveal the description of numerous individual molecules and molecular patterns within OA-associated tissues and fluids. This includes the identification of specific cell (sub)types and associated pathways that contribute to disease mechanisms. However, there remains a necessity to further advance these technologies to delineate the spatial organization of cellular subtypes and molecular patterns within OA-afflicted tissues. CONCLUSIONS: Leveraging a multi-omics approach that integrates datasets from diverse molecular detection technologies, combined with patients' clinical and sociodemographic features, and molecular and regulatory networks, holds promise for identifying unique patient endophenotypes. This holistic approach can illuminate the heterogeneity among OA patients and, in turn, facilitate the development of tailored therapeutic interventions.


Assuntos
Osteoartrite , Proteômica , Humanos , Metabolômica , Perfilação da Expressão Gênica , Proteoma , Osteoartrite/genética , Osteoartrite/metabolismo
2.
Osteoarthritis Cartilage ; 32(7): 858-868, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38428513

RESUMO

OBJECTIVE: Osteoarthritis (OA) is the most prevalent musculoskeletal disease affecting articulating joint tissues, resulting in local and systemic changes that contribute to increased pain and reduced function. Diverse technological advancements have culminated in the advent of high throughput "omic" technologies, enabling identification of comprehensive changes in molecular mediators associated with the disease. Amongst these technologies, genomics and epigenomics - including methylomics and miRNomics, have emerged as important tools to aid our biological understanding of disease. DESIGN: In this narrative review, we selected articles discussing advancements and applications of these technologies to OA biology and pathology. We discuss how genomics, deoxyribonucleic acid (DNA) methylomics, and miRNomics have uncovered disease-related molecular markers in the local and systemic tissues or fluids of OA patients. RESULTS: Genomics investigations into the genetic links of OA, including using genome-wide association studies, have evolved to identify 100+ genetic susceptibility markers of OA. Epigenomic investigations of gene methylation status have identified the importance of methylation to OA-related catabolic gene expression. Furthermore, miRNomic studies have identified key microRNA signatures in various tissues and fluids related to OA disease. CONCLUSIONS: Sharing of standardized, well-annotated omic datasets in curated repositories will be key to enhancing statistical power to detect smaller and targetable changes in the biological signatures underlying OA pathogenesis. Additionally, continued technological developments and analysis methods, including using computational molecular and regulatory networks, are likely to facilitate improved detection of disease-relevant targets, in-turn, supporting precision medicine approaches and new treatment strategies for OA.


Assuntos
Metilação de DNA , Epigenômica , Genômica , Osteoartrite , Humanos , Osteoartrite/genética , Estudo de Associação Genômica Ampla , MicroRNAs/genética , Predisposição Genética para Doença
3.
Rheumatology (Oxford) ; 62(4): 1669-1676, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36040165

RESUMO

OBJECTIVES: To present an unbiased approach to identify positional transcript single nucleotide polymorphisms (SNPs) of osteoarthritis (OA) risk loci by allelic expression imbalance (AEI) analyses using RNA sequencing of articular cartilage and subchondral bone from OA patients. METHODS: RNA sequencing from 65 articular cartilage and 24 subchondral bone from OA patients was used for AEI analysis. AEI was determined for all genes present in the 100 regions reported by the genome-wide association studies (GWAS) catalog that were also expressed in cartilage or bone. The count fraction of the alternative allele (φ) was calculated for each heterozygous individual with the risk SNP or with the SNP in linkage disequilibrium (LD) with it (r2 > 0.6). Furthermore, a meta-analysis was performed to generate a meta-φ (null hypothesis median φ = 0.49) and P-value for each SNP. RESULTS: We identified 30 transcript SNPs (28 in cartilage and two in subchondral bone) subject to AEI in 29 genes. Notably, 10 transcript SNPs were located in genes not previously reported in the GWAS catalog, including two long intergenic non-coding RNAs (lincRNAs), MALAT1 (meta-φ = 0.54, FDR = 1.7×10-4) and ILF3-DT (meta-φ = 0.6, FDR = 1.75×10-5). Moreover, 12 drugs were interacting with seven genes displaying AEI, of which seven drugs have been already approved. CONCLUSIONS: By prioritizing proxy transcript SNPs that mark AEI in cartilage and/or subchondral bone at loci harbouring GWAS signals, we present an unbiased approach to identify the most likely functional OA risk-SNP and gene. We identified 10 new potential OA risk genes ready for further translation towards underlying biological mechanisms.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Cartilagem Articular/metabolismo , Estudo de Associação Genômica Ampla , Osteoartrite/genética , Osteoartrite/metabolismo , Alelos
4.
Rheumatology (Oxford) ; 62(2): 894-904, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35532170

RESUMO

OBJECTIVE: To identify FN1 transcripts associated with OA pathophysiology and investigate the downstream effects of modulating FN1 expression and relative transcript ratio. METHODS: FN1 transcriptomic data was obtained from our previously assessed RNA-seq dataset of lesioned and preserved OA cartilage samples from the Research osteoArthritis Articular Cartilage (RAAK) study. Differential transcript expression analysis was performed on all 27 FN1 transcripts annotated in the Ensembl database. Human primary chondrocytes were transduced with lentiviral particles containing short hairpin RNA (shRNA) targeting full-length FN1 transcripts or non-targeting shRNA. Subsequently, matrix deposition was induced in our 3D in vitro neo-cartilage model. Effects of changes in the FN1 transcript ratio on sulphated glycosaminoglycan (sGAG) deposition were investigated by Alcian blue staining and dimethylmethylene blue assay. Moreover, gene expression levels of 17 cartilage-relevant markers were determined by reverse transcription quantitative polymerase chain reaction. RESULTS: We identified 16 FN1 transcripts differentially expressed between lesioned and preserved cartilage. FN1-208, encoding migration-stimulating factor, was the most significantly differentially expressed protein coding transcript. Downregulation of full-length FN1 and a concomitant increased FN1-208 ratio resulted in decreased sGAG deposition as well as decreased ACAN and COL2A1 and increased ADAMTS-5, ITGB1 and ITGB5 gene expression levels. CONCLUSION: We show that full-length FN1 downregulation and concomitant relative FN1-208 upregulation was unbeneficial for deposition of cartilage matrix, likely due to decreased availability of the classical RGD (Arg-Gly-Asp) integrin-binding site of fibronectin.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Fibronectinas/genética , Fibronectinas/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Condrócitos/metabolismo , Cartilagem Articular/metabolismo , RNA Interferente Pequeno
5.
Cytotherapy ; 25(10): 1057-1068, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37516948

RESUMO

BACKGROUND AIMS: Human umbilical cord-derived mesenchymal stromal cells (hUC-MSCs) are increasingly used in research and therapy. To obtain hUC-MSCs, a diversity of isolation and expansion methods are applied. Here, we report on a robust and standardized method for hUC-MSC isolation and expansion. METHODS: Using 90 hUC donors, we compared and optimized critical variables during each phase of the multi-step procedure involving UC collection, processing, MSC isolation, expansion and characterization. Furthermore, we assessed the effect of donor-to-donor variability regarding UC morphology and donor attributes on hUC-MSC characteristics. RESULTS: We demonstrated robustness of our method across 90 UC donors at each step of the procedure. With our method, UCs can be collected up to 6 h after birth, and UC-processing can be initiated up to 48 h after collection without impacting on hUC-MSC characteristics. The removal of blood vessels before explant cultures improved hUC-MSC purity. Expansion in Minimum essential medium α supplemented with human platelet lysate increased reproducibility of the expansion rate and MSC characteristics as compared with Dulbecco's Modified Eagle's Medium supplemented with fetal bovine serum. The isolated hUC-MSCs showed a purity of ∼98.9%, a viability of >97% and a high proliferative capacity. Trilineage differentiation capacity of hUC-MSCs was reduced as compared with bone marrow-derived MSCs. Functional assays indicated that the hUC-MSCs were able to inhibit T-cell proliferation demonstrating their immune-modulatory capacity. CONCLUSIONS: We present a robust and standardized method to isolate and expand hUC-MSCs, minimizing technical variability and thereby lay a foundation to advance reliability and comparability of results obtained from different donors and different studies.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Reprodutibilidade dos Testes , Cordão Umbilical , Diferenciação Celular , Proliferação de Células
6.
Rheumatology (Oxford) ; 61(2): 856-864, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33989379

RESUMO

OBJECTIVES: OA is a complex genetic disease with different risk factors contributing to its development. One of the genes, TNFRSF11B, previously identified with gain-of-function mutation in a family with early-onset OA with chondrocalcinosis, is among the highest upregulated genes in lesioned OA cartilage (RAAK-study). Here, we determined the role of TNFRSF11B overexpression in development of OA. METHODS: Human primary articular chondrocytes (9 donors RAAK study) were transduced using lentiviral particles with or without TNFRSF11B. Cells were cultured for 1 week in a 3 D in-vitro chondrogenic model. TNFRSF11B overexpression was confirmed by RT-qPCR, immunohistochemistry and ELISA. Effects of TNFRSF11B overexpression on cartilage matrix deposition, matrix mineralization, and genes highly correlated to TNFRSF11B in RNA-sequencing dataset (r >0.75) were determined by RT-qPCR. Additionally, glycosaminoglycans and collagen deposition were visualized with Alcian blue staining and immunohistochemistry (COL1 and COL2). RESULTS: Overexpression of TNFRSF11B resulted in strong upregulation of MMP13, COL2A1 and COL1A1. Likewise, mineralization and osteoblast characteristic markers RUNX2, ASPN and OGN showed a consistent increase. Among 30 genes highly correlated to TNFRSF11B, expression of only eight changed significantly, with BMP6 showing the highest increase (9-fold) while expression of RANK and RANKL remained unchanged indicating previously unknown downstream pathways of TNFRSF11B in cartilage. CONCLUSION: Results of our 3D in vitro chondrogenesis model indicate that upregulation of TNFRSF11B in lesioned OA cartilage may act as a direct driving factor for chondrocyte to osteoblast transition observed in OA pathophysiology. This transition does not appear to act via the OPG/RANK/RANKL triad common in bone remodeling.


Assuntos
Doenças das Cartilagens/etiologia , Osteoartrite/etiologia , Osteoprotegerina/metabolismo , Idoso , Cartilagem/metabolismo , Doenças das Cartilagens/metabolismo , Células Cultivadas , Condrócitos/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Osteoartrite/metabolismo , Reação em Cadeia da Polimerase
7.
Rheumatology (Oxford) ; 62(1): 360-372, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35412619

RESUMO

OBJECTIVES: To study the mechanism by which the readthrough mutation in TNFRSF11B, encoding osteoprotegerin (OPG) with additional 19 amino acids at its C-terminus (OPG-XL), causes the characteristic bidirectional phenotype of subchondral bone turnover accompanied by cartilage mineralization in chondrocalcinosis patients. METHODS: OPG-XL was studied by human induced pluripotent stem cells expressing OPG-XL and two isogenic CRISPR/Cas9-corrected controls in cartilage and bone organoids. Osteoclastogenesis was studied with monocytes from OPG-XL carriers and matched healthy controls followed by gene expression characterization. Dual energy X-ray absorptiometry scans and MRI analyses were used to characterize the phenotype of carriers and non-carriers of the mutation. RESULTS: Human OPG-XL carriers relative to sex- and age-matched controls showed, after an initial delay, large active osteoclasts with high number of nuclei. By employing hiPSCs expressing OPG-XL and isogenic CRISPR/Cas9-corrected controls to established cartilage and bone organoids, we demonstrated that expression of OPG-XL resulted in excessive fibrosis in cartilage and high mineralization in bone accompanied by marked downregulation of MGP, encoding matrix Gla protein, and upregulation of DIO2, encoding type 2 deiodinase, gene expression, respectively. CONCLUSIONS: The readthrough mutation at CCAL1 locus in TNFRSF11B identifies an unknown role for OPG-XL in subchondral bone turnover and cartilage mineralization in humans via DIO2 and MGP functions. Previously, OPG-XL was shown to affect binding between RANKL and heparan sulphate (HS) resulting in loss of immobilized OPG-XL. Therefore, effects may be triggered by deficiency in the immobilization of OPG-XL Since the characteristic bidirectional pathophysiology of articular cartilage calcification accompanied by low subchondral bone mineralization is also a hallmark of OA pathophysiology, our results are likely extrapolated to common arthropathies.


Assuntos
Calcinose , Cartilagem Articular , Condrocalcinose , Células-Tronco Pluripotentes Induzidas , Humanos , Remodelação Óssea , Calcinose/metabolismo , Cartilagem Articular/metabolismo , Condrocalcinose/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo
8.
Rheumatology (Oxford) ; 61(7): 3023-3032, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34730803

RESUMO

OBJECTIVE: To gain insight in the expression profile of long non-coding RNAs (lncRNAs) in OA subchondral bone. METHODS: RNA sequencing data of macroscopically preserved and lesioned OA subchondral bone of patients that underwent joint replacement surgery due to OA (N = 22 pairs; 5 hips, 17 knees, Research osteoArthrits Articular Tissue (RAAK study) was run through an in-house pipeline to detect expression of lncRNAs. Differential expression analysis between preserved and lesioned bone was performed. Spearman correlations were calculated between differentially expressed lncRNAs and differentially expressed mRNAs identified previously in the same samples. Primary osteogenic cells were transfected with locked nucleic acid (LNA) GapmeRs targeting AC005165.1 lncRNA, to functionally investigate its potential mRNA targets. RESULTS: In total, 2816 lncRNAs were well-expressed in subchondral bone and we identified 233 lncRNAs exclusively expressed in knee and 307 lncRNAs exclusively in hip. Differential expression analysis, using all samples (N = 22 pairs; 5 hips, 17 knees), resulted in 21 differentially expressed lncRNAs [false discovery rate (FDR) < 0.05, fold change (FC) range 1.19-7.39], including long intergenic non-protein coding RNA (LINC) 1411 (LINC01411, FC = 7.39, FDR = 2.20 × 10-8), AC005165.1 (FC = 0.44, FDR = 2.37 × 10-6) and empty spiracles homeobox 2 opposite strand RNA (EMX2OS, FC = 0.41, FDR = 7.64 × 10-3). Among the differentially expressed lncRNAs, five were also differentially expressed in articular cartilage, including AC005165.1, showing similar direction of effect. Downregulation of AC005165.1 in primary osteogenic cells resulted in consistent downregulation of highly correlated frizzled related protein (FRZB). CONCLUSION: The current study identified a novel lncRNA, AC005165.1, being dysregulated in OA articular cartilage and subchondral bone. Downregulation of AC005165.1 caused a decreased expression of OA risk gene FRZB, an important member of the wnt pathway, suggesting that AC005165.1 could be an attractive potential therapeutic target with effects in articular cartilage and subchondral bone.


Assuntos
Cartilagem Articular , Peptídeos e Proteínas de Sinalização Intracelular , Osteoartrite do Joelho , Osteoartrite , RNA Longo não Codificante , Osso e Ossos/metabolismo , Cartilagem Articular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Articulação do Joelho/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite do Joelho/diagnóstico , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/cirurgia , RNA Longo não Codificante/genética , RNA Mensageiro/genética
9.
Rheumatology (Oxford) ; 62(1): 457-466, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35383365

RESUMO

OBJECTIVES: To investigate whether the deiodinase inhibitor iopanoic acid (IOP) has chondroprotective properties, a mechanical stress induced model of human aged explants was used to test both repeated dosing and slow release of IOP. METHODS: Human osteochondral explants subjected to injurious mechanical stress (65%MS) were treated with IOP or IOP encapsulated in poly lactic-co-glycolic acid-polyethylene glycol nanoparticles (NP-IOP). Changes to cartilage integrity and signalling were determined by Mankin scoring of histology, sulphated glycosaminoglycan (sGAG) release and expression levels of catabolic, anabolic and hypertrophic markers. Subsequently, on a subgroup of samples, RNA sequencing was performed on 65%MS (n = 14) and 65%MS+IOP (n = 7) treated cartilage to identify IOP's mode of action. RESULTS: Damage from injurious mechanical stress was confirmed by increased cartilage surface damage in the Mankin score, increased sGAG release, and consistent upregulation of catabolic markers and downregulation of anabolic markers. IOP and, though less effective, NP-IOP treatment, reduced MMP13 and increased COL2A1 expression. In line with this, IOP and NP-IOP reduced cartilage surface damage induced by 65%MS, while only IOP reduced sGAG release from explants subjected to 65%MS. Lastly, differential expression analysis identified 12 genes in IOP's mode of action to be mainly involved in reducing metabolic processes (INSIG1, DHCR7, FADS1 and ACAT2) and proliferation and differentiation (CTGF, BMP5 and FOXM1). CONCLUSION: Treatment with the deiodinase inhibitor IOP reduced detrimental changes of injurious mechanical stress. In addition, we identified that its mode of action was likely on metabolic processes, cell proliferation and differentiation.


Assuntos
Cartilagem Articular , Glândula Tireoide , Humanos , Glândula Tireoide/metabolismo , Iodeto Peroxidase/metabolismo , Iodeto Peroxidase/farmacologia , Transdução de Sinais , Cartilagem Articular/metabolismo , Condrócitos/metabolismo
10.
J Pathol ; 255(3): 330-342, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34357595

RESUMO

Chondrocytes in mice developing osteoarthritis (OA) exhibit an aberrant response to the secreted cytokine transforming growth factor (TGF)-ß, consisting in a potentiation of intracellular signaling downstream of the transmembrane type I receptor kinase activin receptor-like kinase (ALK)1 against canonical TGF-ß receptor ALK5-mediated signaling. Unfortunately, the underlying mechanisms remain elusive. In order to identify novel druggable targets for OA, we aimed to investigate novel molecules regulating the ALK1/ALK5 balance in OA chondrocytes. We performed gene expression analysis of TGF-ß signaling modulators in joints from three different mouse models of OA and found an upregulated expression of the TGF-ß co-receptor Cripto (Tdgf1), which was validated in murine and human cartilage OA samples at the protein level. In vitro and ex vivo, elevated expression of Cripto favors the hypertrophic differentiation of chondrocytes, eventually contributing to tissue calcification. Furthermore, we found that Cripto participates in a TGF-ß-ALK1-Cripto receptor complex in the plasma membrane, thereby inducing catabolic SMAD1/5 signaling in chondrocytes. In conclusion, we demonstrate that Cripto is expressed in OA and plays a functional role promoting chondrocyte hypertrophy, thereby becoming a novel potential therapeutic target in OA, for which there is no efficient cure or validated biomarker. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Condrócitos/patologia , Proteínas Ligadas por GPI/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Neoplasias/metabolismo , Osteoartrite/patologia , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Fator de Crescimento Epidérmico/metabolismo , Humanos , Hipertrofia/patologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Transdução de Sinais/fisiologia
11.
Cell Tissue Res ; 386(2): 309-320, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34241697

RESUMO

Cartilage has little intrinsic capacity for repair, so transplantation of exogenous cartilage cells is considered a realistic option for cartilage regeneration. We explored whether human-induced pluripotent stem cells (hiPSCs) could represent such unlimited cell sources for neo-cartilage comparable to human primary articular chondrocytes (hPACs) or human bone marrow-derived mesenchymal stromal cells (hBMSCs). For this, chondroprogenitor cells (hiCPCs) and hiPSC-derived mesenchymal stromal cells (hiMSCs) were generated from two independent hiPSC lines and characterized by morphology, flow cytometry, and differentiation potential. Chondrogenesis was compared to hBMSCs and hPACs by histology, immunohistochemistry, and RT-qPCR, while similarities were estimated based on Pearson correlations using a panel of 20 relevant genes. Our data show successful differentiations of hiPSC into hiMSCs and hiCPCs. Characteristic hBMSC markers were shared between hBMSCs and hiMSCs, with the exception of CD146 and CD45. However, neo-cartilage generated from hiMSCs showed low resemblances when compared to hBMSCs (53%) and hPACs (39%) characterized by lower collagen type 2 and higher collagen type 1 expression. Contrarily, hiCPC neo-cartilage generated neo-cartilage more similar to hPACs (65%), with stronger expression of matrix deposition markers. Our study shows that taking a stepwise approach to generate neo-cartilage from hiPSCs via chondroprogenitor cells results in strong similarities to neo-cartilage of hPACs within 3 weeks following chondrogenesis, making them a potential candidate for regenerative therapies. Contrarily, neo-cartilage deposited by hiMSCs seems more prone to hypertrophic characteristics compared to hPACs. We therefore compared chondrocytes derived from hiMSCs and hiCPCs with hPACs and hBMSCs to outline similarities and differences between their neo-cartilage and establish their potential suitability for regenerative medicine and disease modelling.


Assuntos
Cartilagem/citologia , Condrócitos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Cartilagem/metabolismo , Diferenciação Celular , Linhagem Celular , Condrócitos/metabolismo , Condrogênese , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transcriptoma
12.
Rheumatology (Oxford) ; 60(3): 1166-1175, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32885253

RESUMO

OBJECTIVE: To identify OA subtypes based on cartilage transcriptomic data in cartilage tissue and characterize their underlying pathophysiological processes and/or clinically relevant characteristics. METHODS: This study includes n = 66 primary OA patients (41 knees and 25 hips), who underwent a joint replacement surgery, from which macroscopically unaffected (preserved, n = 56) and lesioned (n = 45) OA articular cartilage were collected [Research Arthritis and Articular Cartilage (RAAK) study]. Unsupervised hierarchical clustering analysis on preserved cartilage transcriptome followed by clinical data integration was performed. Protein-protein interaction (PPI) followed by pathway enrichment analysis were done for genes significant differentially expressed between subgroups with interactions in the PPI network. RESULTS: Analysis of preserved samples (n = 56) resulted in two OA subtypes with n = 41 (cluster A) and n = 15 (cluster B) patients. The transcriptomic profile of cluster B cartilage, relative to cluster A (DE-AB genes) showed among others a pronounced upregulation of multiple genes involved in chemokine pathways. Nevertheless, upon investigating the OA pathophysiology in cluster B patients as reflected by differentially expressed genes between preserved and lesioned OA cartilage (DE-OA-B genes), the chemokine genes were significantly downregulated with OA pathophysiology. Upon integrating radiographic OA data, we showed that the OA phenotype among cluster B patients, relative to cluster A, may be characterized by higher joint space narrowing (JSN) scores and low osteophyte (OP) scores. CONCLUSION: Based on whole-transcriptome profiling, we identified two robust OA subtypes characterized by unique OA, pathophysiological processes in cartilage as well as a clinical phenotype. We advocate that further characterization, confirmation and clinical data integration is a prerequisite to allow for development of treatments towards personalized care with concurrently more effective treatment response.


Assuntos
Perfilação da Expressão Gênica , Osteoartrite do Quadril/genética , Osteoartrite do Joelho/genética , RNA Mensageiro/metabolismo , Idoso , Cartilagem Articular/metabolismo , Análise por Conglomerados , Regulação para Baixo , Feminino , Humanos , Masculino , Análise em Microsséries , Osteoartrite do Quadril/metabolismo , Osteoartrite do Joelho/metabolismo , Fenótipo , Regulação para Cima
13.
FASEB J ; 34(9): 11546-11561, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32767602

RESUMO

Osteoarthritis (OA) is a degenerative joint disease, and inflammation within an arthritic joint plays a critical role in disease progression. Pro-inflammatory cytokines, specifically IL-1 and TNF-α, induce aberrant expression of catabolic and degradative enzymes and inflammatory cytokines in OA and result in a challenging environment for cartilage repair and regeneration. MicroRNAs (miRNAS) are small noncoding RNAs and are important regulatory molecules that act by binding to target messenger RNAs (mRNAs) to reduce protein synthesis and have been implicated in many diseases, including OA. The goal of this study was to understand the mechanisms of miRNA regulation of the transcriptome of tissue-engineered cartilage in response to IL-1ß and TNF-α using an in vitro murine induced pluripotent stem cell (miPSC) model system. We performed miRNA and mRNA sequencing to determine the temporal and dynamic responses of genes to specific inflammatory cytokines as well as miRNAs that are differentially expressed (DE) in response to both cytokines or exclusively to IL-1ß or TNF-α. Through integration of mRNA and miRNA sequencing data, we created networks of miRNA-mRNA interactions which may be controlling the response to inflammatory cytokines. Within the networks, hub miRNAs, miR-29b-3p, miR-17-5p, and miR-20a-5p, were identified. As validation of these findings, we found that delivery of miR-17-5p and miR-20a-5p mimics significantly decreased degradative enzyme activity levels while also decreasing expression of inflammation-related genes in cytokine-treated cells. This study utilized an integrative approach to determine the miRNA interactome controlling the response to inflammatory cytokines and novel mediators of inflammation-driven degradation in tissue-engineered cartilage.


Assuntos
Condrócitos/efeitos dos fármacos , Citocinas/farmacologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mediadores da Inflamação/farmacologia , MicroRNAs/genética , RNA Mensageiro/genética , Animais , Cartilagem Articular/citologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Interleucina-1beta/farmacologia , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Engenharia Tecidual/métodos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Fator de Necrose Tumoral alfa/farmacologia
14.
Ann Rheum Dis ; 78(2): 270-277, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30504444

RESUMO

OBJECTIVE: To uncover the microRNA (miRNA) interactome of the osteoarthritis (OA) pathophysiological process in the cartilage. METHODS: We performed RNA sequencing in 130 samples (n=35 and n=30 pairs for messenger RNA (mRNA) and miRNA, respectively) on macroscopically preserved and lesioned OA cartilage from the same patient and performed differential expression (DE) analysis of miRNA and mRNAs. To build an OA-specific miRNA interactome, a prioritisation scheme was applied based on inverse Pearson's correlations and inverse DE of miRNAs and mRNAs. Subsequently, these were filtered by those present in predicted (TargetScan/microT-CDS) and/or experimentally validated (miRTarBase/TarBase) public databases. Pathway enrichment analysis was applied to elucidate OA-related pathways likely mediated by miRNA regulatory mechanisms. RESULTS: We found 142 miRNAs and 2387 mRNAs to be differentially expressed between lesioned and preserved OA articular cartilage. After applying prioritisation towards likely miRNA-mRNA targets, a regulatory network of 62 miRNAs targeting 238 mRNAs was created. Subsequent pathway enrichment analysis of these mRNAs (or genes) elucidated that genes within the 'nervous system development' are likely mediated by miRNA regulatory mechanisms (familywise error=8.4×10-5). Herein NTF3 encodes neurotrophin-3, which controls survival and differentiation of neurons and which is closely related to the nerve growth factor. CONCLUSIONS: By an integrated approach of miRNA and mRNA sequencing data of OA cartilage, an OA miRNA interactome and related pathways were elucidated. Our functional data demonstrated interacting levels at which miRNA affects expression of genes in the cartilage and exemplified the complexity of functionally validating a network of genes that may be targeted by multiple miRNAs.


Assuntos
Cartilagem Articular/química , Biologia Computacional/métodos , MicroRNAs/análise , Osteoartrite/genética , RNA Mensageiro/análise , Humanos , Análise de Sequência de RNA
15.
Rheumatology (Oxford) ; 58(6): 1065-1074, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649473

RESUMO

OBJECTIVES: Previously, we have shown the involvement of Wnt-activated protein Wnt-1-induced signaling protein 1 (WISP1) in the development of OA in mice. Here, we aimed to characterize the relation between WISP1 expression and human OA and its regulatory epigenetic determinants. METHODS: Preserved and lesioned articular cartilage from end-stage OA patients and non-OA-diagnosed individuals was collected. WISP1 expression was determined using immunohistochemistry and damage was classified using Mankin scoring. RNA expression and DNA methylation were assessed in silico from genome-wide datasets (microarray analysis and RNA sequencing, and 450 k-methylationarrays, respectively). Effects of WISP1 were tested in pellet cultures of primary human chondrocytes. RESULTS: WISP1 expression in cartilage of OA patients was increased compared with non-OA-diagnosed controls and, within OA patients, WISP1 was even higher in lesioned compared with preserved regions, with expression strongly correlating with Mankin score. In early symptomatic OA patients with disease progression, higher synovial WISP1 expression was observed as compared with non-progressors. Notably, increased WISP1 expression was inversely correlated with methylation levels of a positional CpG-dinucleotide (cg10191240), with lesioned areas showing strong hypomethylation for this CpG as compared with preserved cartilage. Additionally, we observed that methylation levels were allele-dependent for an intronic single-nucleotide polymorphism nearby cg10191240. Finally, addition of recombinant WISP1 to pellets of primary chondrocytes strongly inhibited deposition of extracellular matrix as reflected by decreased pellet circumference, proteoglycan content and decreased expression of matrix components. CONCLUSION: Increased WISP1 expression is found in lesioned human articular cartilage, and appears epigenetically regulated via DNA methylation. In vitro assays suggest that increased WISP1 is detrimental for cartilage integrity.


Assuntos
Proteínas de Sinalização Intercelular CCN/metabolismo , Cartilagem Articular/metabolismo , Osteoartrite do Joelho/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Condrócitos/metabolismo , Metilação de DNA , Epigênese Genética , Humanos , Articulação do Joelho/metabolismo
16.
PLoS Genet ; 12(10): e1006260, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27701424

RESUMO

Osteoarthritis is one of the most frequent and disabling diseases of the elderly. Only few genetic variants have been identified for osteoarthritis, which is partly due to large phenotype heterogeneity. To reduce heterogeneity, we here examined cartilage thickness, one of the structural components of joint health. We conducted a genome-wide association study of minimal joint space width (mJSW), a proxy for cartilage thickness, in a discovery set of 13,013 participants from five different cohorts and replication in 8,227 individuals from seven independent cohorts. We identified five genome-wide significant (GWS, P≤5·0×10-8) SNPs annotated to four distinct loci. In addition, we found two additional loci that were significantly replicated, but results of combined meta-analysis fell just below the genome wide significance threshold. The four novel associated genetic loci were located in/near TGFA (rs2862851), PIK3R1 (rs10471753), SLBP/FGFR3 (rs2236995), and TREH/DDX6 (rs496547), while the other two (DOT1L and SUPT3H/RUNX2) were previously identified. A systematic prioritization for underlying causal genes was performed using diverse lines of evidence. Exome sequencing data (n = 2,050 individuals) indicated that there were no rare exonic variants that could explain the identified associations. In addition, TGFA, FGFR3 and PIK3R1 were differentially expressed in OA cartilage lesions versus non-lesioned cartilage in the same individuals. In conclusion, we identified four novel loci (TGFA, PIK3R1, FGFR3 and TREH) and confirmed two loci known to be associated with cartilage thickness.The identified associations were not caused by rare exonic variants. This is the first report linking TGFA to human OA, which may serve as a new target for future therapies.


Assuntos
Osteoartrite do Quadril/genética , Fosfatidilinositol 3-Quinases/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Fator de Crescimento Transformador alfa/genética , Trealase/genética , Idoso , Idoso de 80 Anos ou mais , Cartilagem/patologia , Classe Ia de Fosfatidilinositol 3-Quinase , Feminino , Heterogeneidade Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Articulação do Quadril/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Quadril/patologia , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico/genética
17.
Curr Opin Rheumatol ; 29(1): 119-129, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27749371

RESUMO

PURPOSE OF REVIEW: The purpose of this review is to provide an update of recent advances in the established role of different layers of epigenetic control mechanism that are used by joint cells to ensure tissue homeostasis and cope with changing microenvironment (e.g. ageing or disease). RECENT FINDINGS: New studies have further strengthened the evidence that joint tissue cells highly dependent on epigenetic control mechanisms, such as methylation at CpG-sites, noncoding RNAs and histone modifications to assure phenotypic plasticity and respective tissue homeostasis. Advancements towards high-dimensional molecular profiles and functional follow-up studies have started to uncover the complexity of these interacting networks of control. These studies highlight that in time loosening of epigenetic control increase the propensity of joint tissues to engage an osteoarthritis disease phenotype. SUMMARY: Identification of changes in epigenetically regulated control mechanisms in joint tissues has provided novel insight into underlying mechanism of ongoing osteoarthritis disease pathophysiology. Such insight is crucial to enable development of evidence-based therapeutic options.


Assuntos
Epigênese Genética , Epigenômica/métodos , Osteoartrite/genética , Metilação de DNA , Predisposição Genética para Doença , Humanos , RNA não Traduzido/genética
18.
Ann Rheum Dis ; 76(7): 1199-1206, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27974301

RESUMO

OBJECTIVE: Osteoarthritis (OA) has a strong genetic component but the success of previous genome-wide association studies (GWAS) has been restricted due to insufficient sample sizes and phenotype heterogeneity. Our aim was to examine the effect of clinically relevant endophenotyping according to site of maximal joint space narrowing (maxJSN) and bone remodelling response on GWAS signal detection in hip OA. METHODS: A stratified GWAS meta-analysis was conducted in 2118 radiographically defined hip OA cases and 6500 population-based controls. Signals were followed up by analysing differential expression of proximal genes for bone remodelling endophenotypes in 33 pairs of macroscopically intact and OA-affected cartilage. RESULTS: We report suggestive evidence (p<5×10-6) of association at 6 variants with OA endophenotypes that would have been missed by using presence of hip OA as the disease end point. For example, in the analysis of hip OA cases with superior maxJSN versus cases with non-superior maxJSN we detected association with a variant in the LRCH1 gene (rs754106, p=1.49×10-7, OR (95% CIs) 0.70 (0.61 to 0.80)). In the comparison of hypertrophic with non-hypertrophic OA the most significant variant was located between STT3B and GADL1 (rs6766414, p=3.13×10-6, OR (95% CIs) 1.45 (1.24 to 1.69)). Both of these associations were fully attenuated in non-stratified analyses of all hip OA cases versus population controls (p>0.05). STT3B was significantly upregulated in OA-affected versus intact cartilage, particularly in the analysis of hypertrophic and normotrophic compared with atrophic bone remodelling pattern (p=4.2×10-4). CONCLUSIONS: Our findings demonstrate that stratification of OA cases into more homogeneous endophenotypes can identify genes of potential functional importance otherwise obscured by disease heterogeneity.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Hexosiltransferases/genética , Articulação do Quadril/diagnóstico por imagem , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Osteoartrite do Quadril/diagnóstico por imagem , Atrofia , Remodelação Óssea/genética , Cartilagem Articular/metabolismo , Endofenótipos , Feminino , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Articulação do Quadril/patologia , Humanos , Hipertrofia , Masculino , Osteoartrite do Quadril/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Radiografia , População Branca
19.
Ann Rheum Dis ; 76(12): 2046-2053, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28855172

RESUMO

OBJECTIVE: Osteoarthritis (OA) is the most common form of arthritis and the leading cause of disability in the elderly. Of all the joints, genetic predisposition is strongest for OA of the hand; however, only few genetic risk loci for hand OA have been identified. Our aim was to identify novel genes associated with hand OA and examine the underlying mechanism. METHODS: We performed a genome-wide association study of a quantitative measure of hand OA in 12 784 individuals (discovery: 8743, replication: 4011). Genome-wide significant signals were followed up by analysing gene and allele-specific expression in a RNA sequencing dataset (n=96) of human articular cartilage. RESULTS: We found two significantly associated loci in the discovery set: at chr12 (p=3.5 × 10-10) near the matrix Gla protein (MGP) gene and at chr12 (p=6.1×10-9) near the CCDC91 gene. The DNA variant near the MGP gene was validated in three additional studies, which resulted in a highly significant association between the MGP variant and hand OA (rs4764133, Betameta=0.83, Pmeta=1.8*10-15). This variant is high linkage disequilibrium with a coding variant in MGP, a vitamin K-dependent inhibitor of cartilage calcification. Using RNA sequencing data from human primary cartilage tissue (n=96), we observed that the MGP RNA expression of the hand OA risk allele was significantly lowercompared with the MGP RNA expression of the reference allele (40.7%, p<5*10-16). CONCLUSIONS: Our results indicate that the association between the MGP variant and increased risk for hand OA is caused by a lower expression of MGP, which may increase the burden of hand OA by decreased inhibition of cartilage calcification.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Cartilagem Articular/patologia , Proteínas da Matriz Extracelular/genética , Predisposição Genética para Doença/genética , Articulação da Mão/patologia , Osteoartrite/genética , Adulto , Idoso , Alelos , Calcinose/genética , Proteínas de Transporte/genética , Proteínas do Citoesqueleto , Feminino , Expressão Gênica/genética , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação/genética , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Análise de Sequência de RNA , Proteína de Matriz Gla
20.
Ann Rheum Dis ; 75(3): 571-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25550340

RESUMO

OBJECTIVE: To further explore deiodinase iodothyronine type 2 (DIO2) as a therapeutic target in osteoarthritis (OA) by studying the effects of forced mechanical loading on in vivo joint cartilage tissue homeostasis and the modulating effect herein of Dio2 deficiency. METHODS: Wild-type and C57BL/6-Dio2(-/-) -mice were subjected to a forced running regime for 1 h per day for 3 weeks. Severity of OA was assessed by histological scoring for cartilage damage and synovitis. Genome-wide gene expression was determined in knee cartilage by microarray analysis (Illumina MouseWG-6 v2). STRING-db analyses were applied to determine enrichment for specific pathways and to visualise protein-protein interactions. RESULTS: In total, 158 probes representing 147 unique genes showed significantly differential expression with a fold-change ≥1.5 upon forced exercise. Among these are genes known for their association with OA (eg, Mef2c, Egfr, Ctgf, Prg4 and Ctnnb1), supporting the use of forced running as an OA model in mice. Dio2-deficient mice showed significantly less cartilage damage and signs of synovitis. Gene expression response upon exercise between wild-type and knockout mice was significantly different for 29 genes. CONCLUSIONS: Mice subjected to a running regime have significant increased cartilage damage and synovitis scores. Lack of Dio2 protected against cartilage damage in this model and was reflected in a specific gene expression profile, and either mark a favourable effect in the Dio2 knockout (eg, Gnas) or an unfavourable effect in wild-type cartilage homeostasis (eg, Hmbg2 and Calr). These data further support DIO2 activity as a therapeutic target in OA.


Assuntos
Cartilagem Articular/metabolismo , Iodeto Peroxidase/genética , Articulação do Joelho/metabolismo , Osteoartrite do Joelho/genética , Condicionamento Físico Animal , RNA Mensageiro/metabolismo , Estresse Mecânico , Animais , Cartilagem Articular/patologia , Perfilação da Expressão Gênica , Articulação do Joelho/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Reação em Cadeia da Polimerase em Tempo Real , Iodotironina Desiodinase Tipo II
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA