Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39265046

RESUMO

Mature embryos are the main explants of tissue culture used in rice transgenic technology. However, the mechanism of mature embryo callus formation remains unclear. In this study, a microRNA-mediated gene regulatory network of rice calli was established using degradome sequencing. We identified a microRNA, OsmiR408, that regulates the formation of the callus derived from the mature rice embryo. OsUCLACYANIN 30 (OsUCL 30), a target gene of OsmiR408, was the most abundant cleavage mRNA in rice callus. OsUCL17 was verified as a target gene of OsmiR408 using RNA ligase-mediated 5'-RACE. In analysis of the OsmiR408 promoter reporter line and pri-miR408 transcript level, the promoter activity and transcript level of MIR408 were increased dramatically during callus formation. In phenotypic observations, OsmiR408 knockout caused severe defects in mature embryo callus formation, whereas OsmiR408 overexpression promoted callus formation. Transcriptome analysis demonstrated that OsUCLs and certain genes related to the plant hormone signal transduction and phenylpropanoid-flavonoid biosynthesis pathway had different differential expression patterns between OsmiR408 knockout and overexpression calli. Thus, OsmiR408 may regulate callus formation mainly by affecting plant hormone signal transduction and phenylpropanoid-flavonoid biosynthesis pathway. Our findings provide insight into OsmiR408/UCLs module function in callus formation.

2.
J Colloid Interface Sci ; 426: 324-32, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24863800

RESUMO

Mn-Ce-La oxide-mixed catalysts prepared by the method of complexation followed by calcination at 750°C were tested in the catalytic combustion of chlorobenzene (CB) taken as a model of chlorinated aromatics. XRD analyses show that Mn and La enter CeO2 matrix with a fluorite-like structure to form solid solution. The catalysts with high ratio of Mn/Mn+Ce+La exhibit high activity for CB combustion, due to high oxygen mobility. For all Mn-Ce-La catalysts, deactivation due to Cl adsorption is observed at different temperatures, depending on composition. At 330°C or higher temperature, the removal of Cl species from the surface in the forms of Cl2 (produced through Deacon reaction) and HCl (produced through hydrolysis of Cl) occurs and the activity of catalysts for CB combustion becomes thus stable. Either the addition of water or the increase in gaseous oxygen concentration can promote the removal of Cl species, and thus to increase the activity for CB combustion. High stable activity of Mn-Ce-La catalysts can be related to the combination of good oxidation and Deacon reaction performances.


Assuntos
Cério/química , Cloretos/isolamento & purificação , Temperatura Alta , Lantânio/química , Manganês/química , Adsorção , Catálise , Cloretos/química , Difração de Pó
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA