RESUMO
BACKGROUND: Metastatic breast cancer is responsible for the death of the majority of breast cancer patients. In fact, metastatic BC is the 2nd leading cause of cancer-related deaths in women in the USA and worldwide. Triple negative breast cancer (TNBC), which lacks expression of hormone receptors (ER-α and PR) and ErbB2/HER2, is especially lethal due to its highly metastatic behavior, propensity to recur rapidly, and for its resistance to standard of care therapies, through mechanisms that remain incompletely understood. WAVE3 has been established as a promoter of TNBC development and metastatic progression. In this study, we investigated the molecular mechanisms whereby WAVE3 promotes therapy-resistance and cancer stemness in TNBC, through the regulation of ß-catenin stabilization. METHODS: The Cancer Genome Atlas dataset was used to assess the expression of WAVE3 and ß-catenin in breast cancer tumors. Kaplan-Meier Plotter analysis was used to correlate expression of WAVE3 and ß-catenin with breast cancer patients' survival probability. MTT assay was used to quantify cell survival. CRISPR/Cas9-mediated gene editing, 2D and 3D tumorsphere growth and invasion assays, Immunofluorescence, Western blotting, Semi-quantitative and real-time quantitative PCR analyses were applied to study the WAVE3/ß-catenin oncogenic signaling in TNBC. Tumor xenograft assays were used to study the role of WAVE3 in mediating chemotherapy resistance of TNBC tumors. RESULTS: Genetic inactivation of WAVE3 in combination of chemotherapy resulted in inhibition of 2D growth and 3D tumorsphere formation and invasion of TNBC cells in vitro, as well as tumor growth and metastasis in vivo. In addition, while re-expression of phospho-active WAVE3 in the WAVE3-deficient TNBC cells restored the oncogenic activity of WAVE3, re-expression of phospho-mutant WAVE3 did not. Further studies revealed that dual blocking of WAVE3 expression or phosphorylation in combination with chemotherapy treatment inhibited the activity and expression and stabilization of ß-catenin. Most importantly, the combination of WAVE3-deficiency or WAVE3-phospho-deficiency and chemotherapy suppressed the oncogenic behavior of chemoresistant TNBC cells, both in vitro and in vivo. CONCLUSION: We identified a novel WAVE3/ß-catenin oncogenic signaling axis that modulates chemoresistance of TNBC. This study suggests that a targeted therapeutic strategy against WAVE3 could be effective for the treatment of chemoresistant TNBC tumors.
Assuntos
Neoplasias de Mama Triplo Negativas , Feminino , Humanos , beta Catenina/genética , beta Catenina/metabolismo , beta Catenina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Recidiva Local de Neoplasia , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologiaRESUMO
Potassium loss and persistent shrinkage have both been implicated in apoptosis but their relationship and respective roles remain controversial. We approached this problem by clamping intracellular sodium and potassium in HeLa or MDCK cells using a combination of ionophores. Although ionophore treatment caused significant cell swelling, the initial volume could be restored and further reduced by application of sucrose. The swollen cells treated with ionophores remained viable for at least 8â h without any signs of apoptosis. Application of sucrose and the resulting shrinkage caused volume-dependent intrinsic apoptosis with all its classical features: inversion of phosphatidylserine, caspase activation and Bcl-2-dependent release of cytochrome c from mitochondria. In other experiments, apoptosis was induced by addition of the protein kinase inhibitor staurosporine at various degrees of swelling. Our results show that: (1) persistent shrinkage can cause apoptosis regardless of intracellular sodium or potassium composition or of the state of actin cytoskeleton; (2) strong potassium dependence of caspase activation is only observed in swollen cells with a reduced density of cytosolic proteins. We conclude that macromolecular crowding can be an important factor in determining the transition of cells to apoptosis.
Assuntos
Apoptose , Inibidores Enzimáticos , Caspase 3 , Humanos , Mitocôndrias , Potássio , Estaurosporina/farmacologiaRESUMO
The response of fluorescent ion probes to ions is affected by intracellular environment. To properly calibrate them, intracellular and extracellular concentrations of the measured ion must be made equal. In the first, computational, part of this work, we show, using the example of potassium, that the two requirements for ion equilibration are complete dissipation of membrane potential and high membrane permeability for both potassium and sodium. In the second part, we tested the ability of various ionophores to achieve potassium equilibration in Jurkat and U937â¯cells and found a combination of valinomycin, nigericin, gramicidin and ouabain to be the most effective. In the third part, we applied this protocol to two potassium probes, APG-4 and APG-2. APG-4 shows good sensitivity to potassium but its fluorescence is sensitive to cell volume. Because ionophores cause cell swelling, calibration buffers had to be supplemented with 50â¯mM sucrose to keep cell volume constant. With these precautions taken, the average potassium concentrations in U937 and Jurkat cells were measured at 132â¯mM and 118â¯mM, respectively. The other tested probe, APG-2, is nonselective for cations; this is, however, a potentially useful property because the sum [K+] + [Na+] determines the amount of intracellular water.
Assuntos
Corantes Fluorescentes/química , Calibragem , Linhagem Celular Tumoral , Tamanho Celular/efeitos dos fármacos , Citometria de Fluxo/normas , Corantes Fluorescentes/farmacologia , Humanos , Modelos Teóricos , Valinomicina/farmacologiaRESUMO
Apoptotic volume decrease (AVD) is a characteristic cell shrinkage observed during apoptosis. There are at least two known processes that may result in the AVD: exit of intracellular water and splitting of cells into smaller fragments. Although AVD has traditionally been attributed to water loss, direct evidence for that is often lacking. In this study, we quantified intracellular water in staurosporine-treated cells using a previously described optical microscopic technique that combines volume measurements with quantitative phase analysis. Water loss was observed in detached HeLa and in adherent MDCK but not in adherent HeLa cells. At the same time, adherent HeLa and adherent MDCK cells exhibited visually similar apoptotic morphology, including fragmentation and activation of caspase-3. Morphological changes and caspase activation were prevented by chloride channel blockers DIDS and NPPB in both adherent and suspended HeLa cells, while potassium channel blocker TEA was ineffective. We conclude that staurosporine-induced dehydration is not a universal cell response but depends on the cell type and substrate attachment and can only be judged by direct water measurements. The effects of potassium or chloride channel blockers do not always correlate with the AVD.
Assuntos
Apoptose/efeitos dos fármacos , Estaurosporina/farmacologia , Água/metabolismo , Animais , Tamanho Celular/efeitos dos fármacos , Cães , Inibidores Enzimáticos/farmacologia , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Potássio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologiaRESUMO
Intracellular protein concentration is an essential cell characteristic, which manifests itself through the refractive index. The latter can be measured from two or more mutually defocused brightfield images analyzed using the TIE (transport-of-intensity equation). In practice, however, TIE does not always achieve quantitatively accurate results on biological cells. Therefore, we have developed a calibration procedure that involves successive imaging of cells in solutions containing different amounts of added protein. This allows one to directly relate the output of TIE (T) to intracellular protein concentration C (g/L). The resultant relationship has a simple form: C ≈ 1.0(T/V), where V is the cell volume (µm3 ) and 1.0 is an empirical coefficient. We used calibrated TIE imaging to characterize the regulatory volume increase (RVI) in adherent HeLa cells placed in a hyperosmotic solution. We found that while no RVI occurs over the first 30-60 min, the protein concentration fully recovers after 20 h. Because interpretation of such long experiments may depend on whether protein concentration varies significantly throughout the cell cycle, we measured this parameter in three cell lines: HeLa, MDCK and DU145. Our data indicate that protein concentration remains relatively stable in these cells. © 2017 International Society for Advancement of Cytometry.
Assuntos
Processamento de Imagem Assistida por Computador/métodos , Proteínas/análise , Animais , Linhagem Celular Tumoral , Tamanho Celular , Cães , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Concentração OsmolarRESUMO
Necrotic cells are known to develop characteristic membrane blebs. We measured protein concentration within necrotic blebs and found that it can be reduced by as much as twenty-fold compared to the main cell body (CB). These results raise two questions: 1. Why do proteins vacate the bleb? 2. How can osmotic equilibrium be maintained between the bleb and CB? Our photobleaching and ultracentrifugation experiments indicate extensive protein aggregation. We hypothesize that protein aggregation within the CB shifts the chemical equilibrium and draws proteins out of the bleb; at the same time, aggregation reduces the effective molar concentration of protein in the CB, so that osmotic equilibrium between high-protein CB and low-protein necrotic blebs becomes possible.
Assuntos
Corpo Celular/química , Corpo Celular/metabolismo , Fracionamento Celular , Membrana Celular/metabolismo , Células HeLa , Humanos , Necrose/metabolismo , Agregados Proteicos , Proteínas/análise , Proteínas/metabolismoRESUMO
Proteasomes degrade intracellular proteins to generate antigenic peptides that are recognized by the adaptive immune system and promote anticancer immunity. However, tumors subvert the antigen presentation machinery to escape immunosurveillance. We hypothesized that proteasome activation could concomitantly increase antigen abundance and diversity in multiple myeloma cells. High-throughput screens revealed that histone deacetylase 6 (HDAC6) inhibitors activated proteasomes to unmask neoantigens and amplify the tumor-specific antigenic landscape. Treatment of patient CD138+ cells with HDAC6 inhibitors significantly promoted the antimyeloma activity of autologous CD8+ T cells. Pharmacologic blockade and genetic ablation of the HDAC6 ubiquitin-binding domain released HR23B, which shuttles ubiquitinylated cargo to proteasomes, while silencing HDAC6 or HR23B in multiple myeloma cells abolished the effect of HDAC6 inhibitors on proteasomes, antigen presentation, and T-cell cytotoxicity. Taken together, our results demonstrate the paradigm-shifting translational impact of proteasome activators to expand the myeloma immunopeptidome and have revealed novel, actionable antigenic targets for T cell-directed immunotherapy. SIGNIFICANCE: The elimination of therapy-resistant tumor cells remains a major challenge in the treatment of multiple myeloma. Our study identifies and functionally validates agents that amplify MHC class I-presented antigens and pave the way for the development of proteasome activators as immune adjuvants to enhance immunotherapeutic responses in patients with multiple myeloma.
Assuntos
Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Mieloma Múltiplo , Complexo de Endopeptidases do Proteassoma , Humanos , Apresentação de Antígeno/efeitos dos fármacos , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/imunologiaRESUMO
Functional blockade of the transforming growth factor-beta (TGFß) signalling pathway improves the efficacy of cytotoxic and immunotherapies. Here, we conducted a phase 1b study (ClinicalTrials.gov., NCT03143985) to determine the primary endpoints of safety, tolerability, and maximal tolerated dose (200 mg twice daily) for the orally-available TGFß type I receptor kinase inhibitor vactosertib in combination with pomalidomide in relapsed and/or refractory multiple myeloma (RRMM) patients who had received ≥2 lines of chemoimmunotherapy. Secondary endpoints demonstrated sustained clinical responses, favorable pharmacokinetic parameters and a 6-month progression-free survival of 82%. Vactosertib combined with pomalidomide was well-tolerated at all dose levels and displayed a manageable adverse event profile. Exploratory analysis indicated that vactosertib co-treatment with pomalidomide also reduced TGFß levels in patient bone marrow as well as the level of CD8+ T-cells that expressed the immunoinhibitory marker PD-1. In vitro experiments indicated that vactosertib+pomalidomide co-treatment decreased the viability of MM cell lines and patient tumor cells, and increased CD8+ T-cell cytotoxic activity. Vactosertib is a safe therapeutic that demonstrates tumor-intrinsic activity and can overcome immunosuppressive challenges within the tumor microenvironment to reinvigorate T-cell fitness. Vactosertib offers promise to improve immunotherapeutic responses in heavily-pretreated MM patients refractory to conventional agents.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Mieloma Múltiplo , Receptor do Fator de Crescimento Transformador beta Tipo I , Talidomida , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Talidomida/análogos & derivados , Talidomida/administração & dosagem , Talidomida/uso terapêutico , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Pessoa de Meia-Idade , Feminino , Masculino , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Fator de Crescimento Transformador beta/metabolismo , Recidiva Local de Neoplasia/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/uso terapêutico , Adulto , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Compostos de Anilina , TriazóisRESUMO
Proteasomes generate antigenic peptides that are presented on the tumor surface to cytotoxic T-lymphocytes (CTLs). Immunoproteasomes are highly-specialized proteasome variants that are expressed at higher levels in antigen-presenting cells and contain replacements of the three constitutive proteasome catalytic subunits to generate peptides with a hydrophobic C-terminus that fit within the groove of MHC class I (MHC-I) molecules. A hallmark of cancer is the ability to evade immunosurveillance by disrupting the antigen presentation machinery and downregulating MHC-I antigen presentation. High-throughput screening was performed to identify Compound A, a novel molecule that selectively increased immunoproteasome activity and expanded the number and diversity of MHC-I-bound peptides presented on multiple myeloma (MM) cells. Compound A increased the presentation of individual MHC-I-bound peptides >100-fold and unmasked tumor-specific neoantigens on myeloma cells. Global proteomic integral stability assays determined that Compound A binds the proteasome structural subunit PSMA1 and promotes association of the proteasome activator PA28α/ß (PSME1/PSME2) with immunoproteasomes. CRISPR/Cas9 silencing of PSMA1, PSME1, or PSME2 as well as treatment with immunoproteasome-specific suicide inhibitors abolished the effects of Compound A on antigen presentation. Treatment of MM cell lines and patient bone marrow-derived CD138+ cells with Compound A increased the antimyeloma activity of allogenic and autologous T-cells. Compound A was well-tolerated in vivo and co-treatment with allogeneic T-cells reduced the growth of myeloma xenotransplants in NSG mice. Taken together, our results demonstrate the paradigm-shifting impact of immunoproteasome activators to diversify the antigenic landscape, expand the immunopeptidome, potentiate T-cell-directed therapy, and reveal actionable neoantigens for personalized T-cell immunotherapy.
RESUMO
Kindlin-2 is a cytoskeletal adapter protein that is present in many different cell types. By virtue of its interaction with multiple binding partners, Kindlin-2 intercalates into numerous signaling pathways and cytoskeletal nodes. A specific interaction of Kindlin-2 that is of paramount importance in many cellular responses is its direct binding to the cytoplasmic tails of integrins, an interaction that controls many of the adhesive, migratory and signaling responses mediated by members of the integrin family of cell-surface heterodimers. Kindlin-2 is highly expressed in many cancers and is particularly prominent in prostate cancer cells. CRISPR/cas9 was used as a primary approach to knockout expression of Kindlin-2 in both androgen-independent and dependent prostate cancer cell lines, and the effects of Kindlin-2 suppression on oncogenic properties of these prostate cancer cell lines was examined. Adhesion to extracellular matrix proteins was markedly blunted, consistent with the control of integrin function by Kindlin-2. Migration across matrices was also affected. Anchorage independent growth was markedly suppressed. These observations indicate that Kindlin-2 regulates hallmark features of prostate cancer cells. In androgen expressing cells, testosterone-stimulated adhesion was Kindlin-2-dependent. Furthermore, tumor growth of a prostate cancer cell line lacking Kindlin-2 and implanted into the prostate gland of immunocompromised mice was markedly blunted and was associated with suppression of angiogenesis in the developing tumor. These results establish a key role of Kindlin-2 in prostate cancer progression and suggest that Kindlin-2 represents an interesting therapeutic target for treatment of prostate cancer.
Assuntos
Adesão Celular , Proteínas de Membrana , Proteínas de Neoplasias , Neoplasias da Próstata , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Humanos , Animais , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Linhagem Celular Tumoral , Camundongos , Movimento Celular , Proliferação de Células , Integrinas/metabolismoRESUMO
Pathways that govern cellular bioenergetics are deregulated in tumor cells and represent a hallmark of cancer. Tumor cells have the capacity to reprogram pathways that control nutrient acquisition, anabolism and catabolism to enhance their growth and survival. Tumorigenesis requires the autonomous reprogramming of key metabolic pathways that obtain, generate and produce metabolites from a nutrient-deprived tumor microenvironment to meet the increased bioenergetic demands of cancer cells. Intra- and extracellular factors also have a profound effect on gene expression to drive metabolic pathway reprogramming in not only cancer cells but also surrounding cell types that contribute to anti-tumor immunity. Despite a vast amount of genetic and histologic heterogeneity within and between cancer types, a finite set of pathways are commonly deregulated to support anabolism, catabolism and redox balance. Multiple myeloma (MM) is the second most common hematologic malignancy in adults and remains incurable in the vast majority of patients. Genetic events and the hypoxic bone marrow milieu deregulate glycolysis, glutaminolysis and fatty acid synthesis in MM cells to promote their proliferation, survival, metastasis, drug resistance and evasion of immunosurveillance. Here, we discuss mechanisms that disrupt metabolic pathways in MM cells to support the development of therapeutic resistance and thwart the effects of anti-myeloma immunity. A better understanding of the events that reprogram metabolism in myeloma and immune cells may reveal unforeseen vulnerabilities and advance the rational design of drug cocktails that improve patient survival.
RESUMO
Urothelial cell carcinoma (UCC, bladder cancer, BC) remains a difficult-to-treat malignancy with a rising incidence worldwide. In the U.S., UCC is the sixth most incident neoplasm and ~90% of diagnoses are made in those >55 years of age; it is ~four times more commonly observed in men than women. The most important risk factor for developing BC is tobacco smoking, which accounts for ~50% of cases, followed by occupational exposure to aromatic amines and ionizing radiation. The standard of care for advanced UCC includes platinum-based chemotherapy and programmed cell death (PD-1) or programmed cell death ligand 1 (PD-L1) inhibitors, administered as frontline, second-line, or maintenance therapy. UCC remains generally incurable and is associated with intrinsic and acquired drug and immune resistance. UCC is lethal in the metastatic state and characterized by genomic instability, high PD-L1 expression, DNA damage-response mutations, and a high tumor mutational burden. Although immune checkpoint inhibitors (ICIs) achieve long-term durable responses in other cancers, their ability to achieve similar results with metastatic UCC (mUCC) is not as well-defined. Here, we discuss therapies to improve UCC management and how comprehensive tumor profiling can identify actionable biomarkers and eventually fulfill the promise of precision medicine for UCC patients.
RESUMO
The majority of T-cell responses involve proteasome-dependent protein degradation and the downstream presentation of oligopeptide products complexed with major histocompatibility complex (MHC) class I (MHC-I) molecules to peptide-restricted CD8+ T-cells. However, evasion of host immunity is a cancer hallmark that is achieved by disruption of host antigen processing and presentation machinery (APM). Consequently, mechanisms of immune evasion promote cancer growth and survival as well as de novo and acquired resistance to immunotherapy. A multitude of cell signaling pathways modulate the APM and MHC-I-dependent antigen presentation. Pharmacologics that specifically target and modulate proteasome structure and activity represent a novel emerging strategy to improve the treatment of cancers and other diseases characterized by aberrant protein accumulation. FDA-approved pharmacologics that selectively activate proteasomes and/or immunoproteasomes can be repositioned to overcome the current bottlenecks that hinder drug development to enhance antigen presentation, modulate the immunopeptidome, and enhance the cytotoxic activity of endogenous or engineered T-cells. Strategies to enhance antigen presentation may also improve the antitumor activity of T-cell immunotherapies, checkpoint inhibitors, and cancer vaccines. Proteasomes represent actionable therapeutic targets to treat difficult-to-treat infectious processes and neurodegenerative diseases that are characterized by the unwanted accrual of insoluble, deleterious, and potentially toxic proteins. Taken together, we highlight the breadth and magnitude of the proteasome and the immense potential to amplify and unmask the immunopeptidomic landscape to improve the treatment of a spectrum of human diseases.
RESUMO
Breast cancer is the most frequently diagnosed malignancy in women and the major cause of death because of its invasion, metastasis, and resistance to therapies capabilities. The most aggressive subtype of breast cancer is triple-negative breast cancer (TNBC) due to invasive and metastatic properties along with early age of diagnosis and poor prognosis. TNBC tumors do not express estrogen, progesterone, and HER2 receptors, which limits their treatment with targeted therapies. Cancer invasiveness and metastasis are known to be promoted by increased cell motility and upregulation of the WAVE proteins. While the contribution of WAVE2 to cancer progression is well documented, the WAVE2-mediated regulation of TNBC oncogenic properties is still under investigated, as does the molecular mechanisms by which WAVE2 regulates such oncogenic pathways. In this study, we show that WAVE2 plays a significant role in TNBC development, progression, and metastasis, through the regulation of miR-29 expression, which in turn targets Integrin-ß1 (ITGB1) and its downstream oncogenic activities. Conversely, we found WAVE2 expression to be regulated by miR-29 in a negative regulatory feedback loop. Reexpression of exogenous WAVE2 in the WAVE2-deficient TNBC cells resulted in reactivation of ITGB1 expression and activity, further confirming the specificity of WAVE2 in regulating Integrin-ß1. Together, our data identify a novel WAVE2/miR-29/ITGB1 signaling axis, which is essential for the regulation of the invasion-metastasis cascade in TNBC. Our findings offer new therapeutic strategies for the treatment of TNBC by targeting WAVE2 and/or its downstream effectors. Significance: Identification of a novel WAVE2/miR-29/ITGB1 signaling axis may provide new insights on how WAVE2 regulates the invasion-metastasis cascade of TNBC tumors through the modulation of ITGB1 and miR-29.
Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/genética , Integrina beta1/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genéticaRESUMO
Functional blockade of the transforming growth factor-beta (TGF-ß) signaling pathway improves the efficacy of cytotoxic and immunotherapies. We conducted a phase 1b study to determine the safety, efficacy, and maximal tolerated dose (200 mg po bid) of the potent, orally-available TGF-ß type I receptor kinase inhibitor vactosertib in relapsed and/or refractory multiple myeloma patients who had received ≥2 lines of chemoimmunotherapy. Vactosertib combined with pomalidomide was well-tolerated at all doses, had a manageable adverse event profile and induced durable responses with 80% progression-free survival (PFS-6) at 6 months, while pomalidomide alone historically achieved 20% PFS-6. Following treatment, the immunosuppressive marker PD-1 expression was reduced on patient CD8+ T-cells. Following ex vivo treatment, vactosertib decreased PD-1 expression on patient CD138+ cells, reduced PD-L1/PD-L2 on patient CD138+ cells and enhanced the anti-myeloma activity of autologous T-cells. Taken together, vactosertib is a safe immunotherapy that modulates the T-cell immunophenotype to reinvigorate T-cell fitness. Multiple myeloma (MM) is a genetically heterogeneous hematologic malignancy characterized by the excessive proliferation of clonal plasma cells (1, 2). MM remains mostly incurable but a small group of patients can achieve long-term remission (3). Treatment of MM presents unique challenges due to the complex molecular pathophysiology and genetic heterogeneity (4, 5). Given that MM is the second most common blood cancer characterized by cycles of remission and relapse, the development of new therapeutic modalities is crucial (6, 7). The prognosis for MM patients has improved substantially over the past two decades with the development of more effective therapeutics, e.g., proteasome inhibitors, and regimens that demonstrate greater anti-tumor activity (8-10). The management of RRMM represents a vital aspect of the overall care for patients with disease and a critical area of ongoing scientific and clinical research (10-12).
RESUMO
A deeper understanding of basic immunology principles and advances in bioengineering have accelerated the mass production of genetically-reprogrammed T-cells as living drugs to treat human diseases. Autologous and allogeneic cytotoxic T-cells have been weaponized to brandish MHC-independent chimeric antigen receptors (CAR) that specifically engage antigenic regions on tumor cells. Two distinct CAR-based therapeutics designed to target BCMA are now FDA-approved based upon robust, sustained responses in heavily-pretreated multiple myeloma (MM) patients enrolled on the KarMMa and CARTITUDE-1 studies. While promising, CAR T-cells present unique challenges such as antigen escape and T-cell exhaustion. Here, we review novel strategies to design CARs that overcome current limitations. Co-stimulatory signaling regions were added to second-generation CARs to promote IL-2 synthesis, activate T-cells and preclude apoptosis. Third-generation CARs are composed of multiple co-stimulatory signaling units, e.g., CD28, OX40, 4-1BB, to reduce exhaustion. Typically, CAR T-cells incorporate a potent constitutive promoter that maximizes long-term CAR expression but extended CAR activation may also promote T-cell exhaustion. Hypoxia-inducible elements can be incorporated to conditionally drive CAR expression and selectively target MM cells within bone marrow. CAR T-cell survival and activity is further realized by blocking intrinsic regulators of T-cell inactivation. T-Cells Redirected for Universal Cytokine Killing (TRUCKs) bind a specific tumor antigen and produce cytokines to recruit endogenous immune cells. Suicide genes have been engineered into CAR T-cells given the potential for long-term on-target, off-tumor effects. Universal allo-CAR T-cells represent an off-the-shelf source, while logic-gated CAR T-cells are designed to recognize tumor-specific features coupled with Boolean-generated binary gates that then dictate cell-fate decisions. Future generations of CARs should further revitalize immune responses, enhance tumor specificity and reimagine strategies to treat myeloma and other cancers.
Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Antígenos CD28 , Citocinas , Humanos , Imunoterapia Adotiva , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Receptores de Antígenos de Linfócitos TRESUMO
Multiple myeloma (MM) remains a lethal hematologic cancer characterized by the expansion of transformed plasma cells within the permissive bone marrow (BM) milieu. The emergence of relapsed and/or refractory MM (RRMM) is provoked through clonal evolution of malignant plasma cells that harbor genomic, metabolic and proteomic perturbations. For most patients, relapsed disease remains a major cause of overall mortality. Transforming growth factors (TGFs) have pleiotropic effects that regulate myelomagenesis as well as the emergence of drug resistance. Moreover, TGF-ß modulates numerous cell types present with the tumor microenvironment, including many immune cell types. While numerous agents have been FDA-approved over the past 2 decades and significantly expanded the treatment options available for MM patients, the molecular mechanisms responsible for drug resistance remain elusive. Multiple myeloma is uniformly preceded by a premalignant state, monoclonal gammopathy of unknown significance, and both conditions are associated with progressive deregulation in host immunity characterized by reduced T cell, natural killer (NK) cell and antigen-presenting dendritic cell (DC) activity. TGF-ß promotes myelomagenesis as well as intrinsic drug resistance by repressing anti-myeloma immunity to promote tolerance, drug resistance and disease progression. Hence, repression of TGF-ß signaling is a prerequisite to enhance the efficacy of current and future immunotherapeutics. Novel strategies that incorporate T cells that have been modified to express chimeric antigen receptor (CARs), T cell receptors (TCRs) and bispecific T cell engagers (BiTEs) offer promise to block TGF-ß signaling, overcome chemoresistance and enhance anti-myeloma immunity. Here, we describe the effects of TGF-ß signaling on immune cell effectors in the bone marrow and emerging strategies to overcome TGF-ß-mediated myeloma growth, drug resistance and survival.
RESUMO
Breast cancer (BC) is one of the leading causes of cancer-related deaths due in part to its invasive and metastatic properties. Kindlin-2 (FERMT2) is associated with the pathogenesis of several cancers. Although the role of Kindlin-2 in regulating the invasion-metastasis cascade in BC is widely documented, its function in BC initiation and progression remains to be fully elucidated. Accordingly, we generated a floxed mouse strain by targeting the Fermt2 (K2lox/lox) locus, followed by tissue-specific deletion of Kindlin-2 in the myoepithelial compartment of the mammary glands by crossing the K2lox/lox mice with K14-Cre mice. Loss of Kindlin-2 in mammary epithelial cells (MECs) showed no deleterious effects on mammary gland development, fertility, and lactation in mice bearing Kindlin-2-deletion. However, in a syngeneic mouse model of BC, mammary gland, specific knockout of Kindlin-2 inhibited the growth and metastasis of murine E0771 BC cells inoculated into the mammary fat pads. However, injecting the E0771 cells into the lateral tail vein of Kindlin-2-deleted mice had no effect on tumor colonization in the lungs, thereby establishing a critical role of MEC Kindlin-2 in supporting BC tumor growth and metastasis. Mechanistically, we found the MEC Kindlin-2-mediated inhibition of tumor growth and metastasis is accomplished through its regulation of the TGF-ß/ERK MAP kinase signaling axis. Thus, Kindlin-2 within the mammary gland microenvironment facilitates the progression and metastasis of BC.
RESUMO
The standard theory of apoptotic volume decrease (AVD) posits activation of potassium and/or chloride channels, causing an efflux of ions and osmotic loss of water. However, in view of the multitude of possible channels that are known to support apoptosis, a model based on specific signaling to a channel presents certain problems. We propose another mechanism of apoptotic dehydration based on cytoskeletal compression. As is well known, cytoskeleton is not strong enough to expel a substantial amount of water against an osmotic gradient. It is possible, however, that an increase in intracellular pressure may cause an initial small efflux of water, and that will create a small concentration gradient of ions, favoring their exit. If the channels are open, some ions will exit the cell, relieving the osmotic gradient; in this way, the process will be able to continue. Calculations confirm the possibility of such a mechanism. An increase in membrane permeability for water or ions may also result in dehydration if accompanied even by a constant cytoskeletal pressure. We review the molecular processes that may lead to apoptotic dehydration in the context of this model.