Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Appl Biochem ; 69(1): 7-19, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33179313

RESUMO

Enzymatic biodiesel production has been at the forefront of biofuels research in recent decades because of the significant environmental advantages it offers, while having the potential to be as effective as conventional chemically catalyzed biodiesel production. However, the higher capital cost, longer reaction time, and sensitivity of enzyme processes have restricted their widespread industrial adoption so far. It is also posited that the lack of research to bring the biodiesel product into final specification has scuppered industrial confidence in the viability of the enzymatic process. Furthermore, the vast majority of literature has focused on the development of immobilized enzyme processes, which seem too costly (and risky) to be used industrially. There has been little focus on liquid lipase formulations such as the Eversa Transform 2.0, which is in fact already used commercially for triglyceride transesterification. It is the objective of this review to highlight new research that focuses on bringing enzymatically produced biodiesel into specification via a liquid lipase polishing process, and the process considerations that come with it.


Assuntos
Biocombustíveis , Lipase , Biotecnologia , Enzimas Imobilizadas/metabolismo , Esterificação , Lipase/metabolismo
2.
Biotechnol Bioeng ; 113(4): 754-60, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26442879

RESUMO

The alkaline process for making biodiesel (fatty acid methyl esters, or FAME) is highly efficient at the transesterification of glycerides. However, its performance is poor when it comes to using oil that contain significant amounts of free fatty acids (FFA). The traditional approach to such feedstocks is to employ acid catalysis, which is slow and requires a large excess of methanol, or to evaporate FFA and convert that in a separate process. An attractive option would be to convert the FFA in oil feedstocks to FAME, before introducing it into the alkaline process. The high selectivity of enzyme catalysis makes it a suitable basis for such a pretreatment process. In this work, we present a characterization of the pretreatment of high-FFA rapeseed oil using immobilized Candida antarctica lipase B (Novozym 435), focused on the impact of initial FFA and methanol concentration. Based on experimental results, we have identified limitations for the process in terms of FFA concentration in the feedstock and make suggestions for process operation. It was found that, using 5% catalyst and 4% methanol at 35°C, the FFA concentration could be reduced to 0.5% within an hour for feedstock containing up to 15% FFA. Further, the reaction was observed to be under kinetic control, in that the biocatalyst converts FFA (and FAME) at a much higher rate than glyceride substrates. There is thus, both a minimum and a maximum reaction time for the process to achieve the desired concentration of FFA. Finally, an assessment of process stability in a continuous packed bed system indicates that as much as 15 m(3) oil could potentially be pretreated by 1 kg of biocatalyst at the given process conditions.


Assuntos
Biocombustíveis , Ácidos Graxos/metabolismo , Lipase/metabolismo , Metanol/metabolismo , Óleos de Plantas/metabolismo , Biotransformação , Enzimas Imobilizadas/metabolismo , Ácidos Graxos/análise , Ácidos Graxos Monoinsaturados , Proteínas Fúngicas , Cinética , Óleo de Brassica napus , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA