Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 83(13): 5153-9, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21604676

RESUMO

We describe the incorporation of multiple fluorophores into a single stranded DNA (ssDNA) chain using terminal deoxynucleotidyl transferase (TdT), a template-independent DNA polymerase that catalyzes the sequential addition of deoxynucleotides (dNTPs) at the 3'-OH group of an oligonucleotide primer; we term this methodology surface initiated enzymatic polymerization (SIEP) of DNA. We found that long (>1 Kb) ssDNA homopolymer can be grown by SIEP, and that the length of the ssDNA product is determined by the monomer to oligonucleotide initiator ratio. We observed efficient initiation (≥50%) and narrow polydispersity of the extended product when fluorescently labeled nucleotides are incorporated. TdT's ability to incorporate fluorescent dNTPs into a ssDNA chain was characterized by examining the effect of the molar ratios of fluorescent dNTP to natural dNTP on the degree of fluorophore incorporation and the length of the polymerized DNA strand. These experiments allowed us to optimize the polymerization conditions to incorporate up to ~50 fluorescent Cy3-labeled dNTPs per kilobase into a ssDNA chain. With the goal of using TdT as an on-chip labeling method, we also quantified TdT mediated signal amplification on the surface by immobilizing ssDNA oligonucleotide initiators on a glass surface followed by SIEP of DNA. The incorporation of multiple fluorophores into the extended DNA chain by SIEP translated to a ~45 fold signal amplification compared to the incorporation of a single fluorophore. SIEP was then employed to detect hybridization of DNA, by the posthybridization, on-chip polymerization of fluorescently labeled ssDNA that was grown from the 3'-OH of target strands that hybridized to DNA probes that were printed on a surface. A dose-response curve for detection of DNA hybridization by SIEP was generated, with a ~1 pM limit of detection and a linear dynamic range of 2 logs.


Assuntos
DNA/genética , Hibridização de Ácido Nucleico , Polímeros/química , Espectrometria de Fluorescência , Sequência de Bases , Primers do DNA , Propriedades de Superfície
2.
Appl Opt ; 50(21): 4198-206, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21772408

RESUMO

The development of truly scalable, multiplexed optical microarrays requires a detection platform capable of simultaneous detection of multiple signals in real-time. We present a technique we term dual-order snapshot spectroscopic imaging (DOSSI) and demonstrate that it can be effectively used to collect spectrally resolved images of a full field of view of sparsely located spots in real time. Resonant peaks of plasmonic gold nanoparticles were tracked as a function of their surrounding refractive index. Measurement uncertainty analysis indicated that the spectral resolution of DOSSI in the described configuration is approximately 0.95 nm. Further, real-time measurements by DOSSI allowed discrimination between optically identical nanoparticles that were functionalized with two homologous small molecule ligands that bound to the same protein, albeit with different affinity, based purely on their different molecular interaction kinetics-a feat not possible with slower raster-type hyperspectral imaging systems, or other dark-field optical detection systems that solely rely on end point measurements. Kinetic measurements of plasmon bands by DOSSI can be performed with a relatively simple optical system, thereby opening up the possibility of developing low-cost detectors for arrayed plasmonic diagnostics.


Assuntos
Nanopartículas Metálicas , Ressonância de Plasmônio de Superfície/métodos , Biotina/análogos & derivados , Ouro , Nanotecnologia , Nanotubos , Fenômenos Ópticos , Ligação Proteica , Estreptavidina , Ressonância de Plasmônio de Superfície/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA