Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1838(9): 2331-40, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24657395

RESUMO

Eukaryotic lipids in a bilayer are dominated by weak cooperative interactions. These interactions impart highly dynamic and pliable properties to the membrane. C2 domain-containing proteins in the membrane also interact weakly and cooperatively giving rise to a high degree of conformational plasticity. We propose that this feature of weak energetics and plasticity shared by lipids and C2 domain-containing proteins enhance a cell's ability to transduce information across the membrane. We explored this hypothesis using information theory to assess the information storage capacity of model and mast cell membranes, as well as differential scanning calorimetry, carboxyfluorescein release assays, and tryptophan fluorescence to assess protein and membrane stability. The distribution of lipids in mast cell membranes encoded 5.6-5.8bits of information. More information resided in the acyl chains than the head groups and in the inner leaflet of the plasma membrane than the outer leaflet. When the lipid composition and information content of model membranes were varied, the associated C2 domains underwent large changes in stability and denaturation profile. The C2 domain-containing proteins are therefore acutely sensitive to the composition and information content of their associated lipids. Together, these findings suggest that the maximum flow of signaling information through the membrane and into the cell is optimized by the cooperation of near-random distributions of membrane lipids and proteins. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.


Assuntos
Membrana Celular/química , Bicamadas Lipídicas/química , Lipídeos/química , Proteínas de Membrana/química , Varredura Diferencial de Calorimetria , Membrana Celular/metabolismo , Humanos , Mastócitos/química , Microdomínios da Membrana/química , Fosfatidilcolinas/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transdução de Sinais
2.
Biophys J ; 104(11): 2437-47, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23746516

RESUMO

Isothermal titration calorimetry was used to characterize the binding of calcium ion (Ca²âº) and phospholipid to the peripheral membrane-binding protein annexin a5. The phospholipid was a binary mixture of a neutral and an acidic phospholipid, specifically phosphatidylcholine and phosphatidylserine in the form of large unilamellar vesicles. To stringently define the mode of binding, a global fit of data collected in the presence and absence of membrane concentrations exceeding protein saturation was performed. A partition function defined the contribution of all heat-evolving or heat-absorbing binding states. We find that annexin a5 binds Ca²âº in solution according to a simple independent-site model (solution-state affinity). In the presence of phosphatidylserine-containing liposomes, binding of Ca²âº differentiates into two classes of sites, both of which have higher affinity compared with the solution-state affinity. As in the solution-state scenario, the sites within each class were described with an independent-site model. Transitioning from a solution state with lower Ca²âº affinity to a membrane-associated, higher Ca²âº affinity state, results in cooperative binding. We discuss how weak membrane association of annexin a5 prior to Ca²âº influx is the basis for the cooperative response of annexin a5 toward Ca²âº, and the role of membrane organization in this response.


Assuntos
Anexina A5/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Modelos Biológicos , Membrana Celular/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA