RESUMO
Treatment with immune checkpoint blockade (ICB) has revolutionized cancer therapy. Until now, predictive biomarkers1-10 and strategies to augment clinical response have largely focused on the T cell compartment. However, other immune subsets may also contribute to anti-tumour immunity11-15, although these have been less well-studied in ICB treatment16. A previously conducted neoadjuvant ICB trial in patients with melanoma showed via targeted expression profiling17 that B cell signatures were enriched in the tumours of patients who respond to treatment versus non-responding patients. To build on this, here we performed bulk RNA sequencing and found that B cell markers were the most differentially expressed genes in the tumours of responders versus non-responders. Our findings were corroborated using a computational method (MCP-counter18) to estimate the immune and stromal composition in this and two other ICB-treated cohorts (patients with melanoma and renal cell carcinoma). Histological evaluation highlighted the localization of B cells within tertiary lymphoid structures. We assessed the potential functional contributions of B cells via bulk and single-cell RNA sequencing, which demonstrate clonal expansion and unique functional states of B cells in responders. Mass cytometry showed that switched memory B cells were enriched in the tumours of responders. Together, these data provide insights into the potential role of B cells and tertiary lymphoid structures in the response to ICB treatment, with implications for the development of biomarkers and therapeutic targets.
Assuntos
Linfócitos B/imunologia , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/imunologia , Imunoterapia , Melanoma/tratamento farmacológico , Melanoma/imunologia , Estruturas Linfoides Terciárias/imunologia , Linfócitos B/citologia , Linfócitos B/metabolismo , Biomarcadores Tumorais/análise , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/cirurgia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/imunologia , Células Clonais/citologia , Células Clonais/imunologia , Células Clonais/metabolismo , Células Dendríticas Foliculares/citologia , Células Dendríticas Foliculares/imunologia , Regulação Neoplásica da Expressão Gênica , Humanos , Memória Imunológica/imunologia , Espectrometria de Massas , Melanoma/patologia , Melanoma/cirurgia , Metástase Neoplásica/genética , Fenótipo , Prognóstico , RNA-Seq , Receptores Imunológicos/imunologia , Análise de Célula Única , Linfócitos T/citologia , Linfócitos T/imunologia , TranscriptomaRESUMO
Glucose limitation and increased lactic acid levels are consequences of the elevated glycolytic activity of tumor cells, and constitute a metabolic barrier for the function of tumor infiltrating effector immune cells. The immune-suppressive functions of regulatory T cells (Tregs) are unobstructed in lactic-acid rich environments. However, the impact of lactic acid on the induction of Tregs remains unknown. We observed increased TGFß-mediated induction of Forkhead box P3+ (FoxP3+ ) cells in the presence of extracellular lactic acid, in a glycolysis-independent, acidity-dependent manner. These CD4+ FoxP3+ cells expressed Treg-associated markers, including increased expression of CD39, and were capable of exerting suppressive functions. Corroborating these results in vivo, we observed that neutralizing the tumor pH by systemic administration of sodium bicarbonate (NaBi) decreased Treg abundance. We conclude that acidity augments Treg induction and propose that therapeutic targeting of acidity in the tumor microenvironment (TME) might reduce Treg-mediated immune suppression within tumors.
Assuntos
Neoplasias , Linfócitos T Reguladores , Humanos , Fator de Crescimento Transformador beta/metabolismo , Terapia de Imunossupressão , Fatores de Transcrição/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Microambiente TumoralRESUMO
Metabolic reprogramming of cancer cells generates a tumour microenvironment (TME) characterised by nutrient restriction, hypoxia, acidity and oxidative stress. While these conditions are unfavourable for infiltrating effector T cells, accumulating evidence suggests that regulatory T cells (Tregs) continue to exert their immune-suppressive functions within the TME. The advantages of Tregs within the TME stem from their metabolic profile. Tregs rely on oxidative phosphorylation for their functions, which can be fuelled by a variety of substrates. Even though Tregs are an attractive target to augment anti-tumour immune responses, it remains a challenge to specifically target intra-tumoral Tregs. We provide a comprehensive review of distinct mechanistic links and pathways involved in regulation of Treg metabolism under the prevailing conditions within the tumour. We also describe how these Tregs differ from the ones in the periphery, and from conventional T cells in the tumour. Targeting pathways responsible for adaptation of Tregs in the tumour microenvironment improves anti-tumour immunity in preclinical models. This may provide alternative therapies aiming at reducing immune suppression in the tumour.
Assuntos
Metabolismo Energético , Linfócitos do Interstício Tumoral/metabolismo , Metaboloma , Neoplasias/metabolismo , Linfócitos T Reguladores/metabolismo , Microambiente Tumoral , Animais , Suscetibilidade a Doenças , Glicólise , Humanos , Imunomodulação , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Metabolômica/métodos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neoplasias/etiologia , Neoplasias/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Microambiente Tumoral/imunologiaRESUMO
While immunotherapy has become standard-of-care for cutaneous melanoma patients, primary and acquired resistance prevent long-term benefits for about half of the late-stage patients. Pre-clinical models are essential to increase our understanding of the resistance mechanisms of melanomas, aiming to improve the efficacy of immunotherapy. Here, we present two novel syngeneic transplantable murine melanoma cell lines derived from the same primary tumor induced on BrafV600E Pten-/- mice: MeVa2.1 and MeVa2.2. Derivatives of these cell lines expressing the foreign antigen ovalbumin (dOVA) showed contrasting immune-mediated tumor control. MeVa2.2.dOVA melanomas were initially controlled in immune-competent hosts until variants grew out that had lost their antigens. By contrast, MeVa2.1.dOVA tumors were not controlled despite presenting the strong OVA antigen, as well as infiltration of tumor-reactive CD8+ T cells. MeVa2.1.dOVA displayed reduced sensitivity to T cell-mediated killing and growth inhibition in vitro by both IFN-γ and TNF-α. MeVa2.1.dOVA tumors were transiently controlled in vivo by either targeted therapy, adoptive T cell transfer, regulatory T cell depletion, or immune checkpoint blockade. MeVa2.1.dOVA could thus become a valuable melanoma model to evaluate novel immunotherapy combinations aiming to overcome immune resistance mechanisms.
Assuntos
Melanoma , Neoplasias Cutâneas , Camundongos , Animais , Melanoma/patologia , Neoplasias Cutâneas/genética , Imunoterapia , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , AntígenosRESUMO
Cross-presentation of tumor antigens by dendritic cells (DC) is crucial to prime, stimulate and restimulate CD8+ T cells. This process is important in initiating and maintaining an antitumor response. Here, we show that the presence of conventional type 1 DCs (cDC1), a DC subtype that excels in cross-presentation, in the tumor correlated with response to neoadjuvant immune checkpoint blockade (ICB) in melanoma. This led us to hypothesize that patients failing to respond to ICB could benefit from enhanced cross-presentation of tumor antigens. We therefore established a cross-presentation assay to screen over 5,500 compounds for enhancers of DC cross-presentation using induced T-cell proliferation as the readout. We identified 145 enhancers, including AZD5582, an antagonist of inhibitor of apoptosis proteins (IAP) cIAP1, cIAP2, and XIAP. AZD5582 treatment led to DC activation of the noncanonical NF-kB pathway, enhanced antigen import from endolysosomes into the cytosol, and increased expression of genes involved in cross-presentation. Furthermore, it upregulated expression of CD80, CD86, MHC class II, CD70 and secretion of TNF by DCs. This enhanced DC activation and maturation program was observed also in tumor-bearing mice upon AZD5582 treatment, culminating in an increased frequency of systemic tumor antigen-specific CD8+ T cells. Our results merit further exploration of AZD5582 to increase antigen cross-presentation for improving the clinical benefit of ICB in patients who are unlikely to respond to ICB.
Assuntos
Apresentação Cruzada , Melanoma , Camundongos , Animais , Células Dendríticas , Apresentação de Antígeno , Antígenos de Neoplasias , Proteínas Inibidoras de Apoptose/metabolismo , Proliferação de CélulasRESUMO
Neoadjuvant ipilimumab + nivolumab has demonstrated high pathologic response rates in stage III melanoma. Patients with low intra-tumoral interferon-γ (IFN-γ) signatures are less likely to benefit. We show that domatinostat (a class I histone deacetylase inhibitor) addition to anti-PD-1 + anti-CTLA-4 increased the IFN-γ response and reduced tumor growth in our murine melanoma model, rationalizing evaluation in patients. To stratify patients into IFN-γ high and low cohorts, we developed a baseline IFN-γ signature expression algorithm, which was prospectively tested in the DONIMI trial. Patients with stage III melanoma and high intra-tumoral IFN-γ scores were randomized to neoadjuvant nivolumab or nivolumab + domatinostat, while patients with low IFN-γ scores received nivolumab + domatinostat or ipilimumab + nivolumab + domatinostat. Domatinostat addition to neoadjuvant nivolumab ± ipilimumab did not delay surgery but induced unexpected severe skin toxicity, hampering domatinostat dose escalation. At studied dose levels, domatinostat addition did not increase treatment efficacy. The baseline IFN-γ score adequately differentiated patients who were likely to benefit from nivolumab alone versus patients who require other therapies.
Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Animais , Camundongos , Nivolumabe/efeitos adversos , Ipilimumab/uso terapêutico , Ipilimumab/efeitos adversos , Terapia Neoadjuvante , Interferon gama , Melanoma/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Melanoma Maligno CutâneoRESUMO
BACKGROUND: Continuous combination of MAPK pathway inhibition (MAPKi) and anti-programmed death-(ligand) 1 (PD-(L)1) showed high response rates, but only limited improvement in progression-free survival (PFS) at the cost of a high frequency of treatment-related adverse events (TRAE) in patients with BRAFV600-mutated melanoma. Short-term MAPKi induces T-cell infiltration in patients and is synergistic with anti-programmed death-1 (PD-1) in a preclinical melanoma mouse model. The aim of this phase 2b trial was to identify an optimal regimen of short-term MAPKi with dabrafenib plus trametinib in combination with pembrolizumab. METHODS: Patients with treatment-naïve BRAFV600E/K-mutant advanced melanoma started pembrolizumab 200 mg every 3 weeks. In week 6, patients were randomized to continue pembrolizumab only (cohort 1), or to receive, in addition, intermittent dabrafenib 150 mg two times per day plus trametinib 2 mg one time per day for two cycles of 1 week (cohort 2), two cycles of 2 weeks (cohort 3), or continuously for 6 weeks (cohort 4). All cohorts continued pembrolizumab for up to 2 years. Primary endpoints were safety and treatment-adherence. Secondary endpoints were objective response rate (ORR) at week 6, 12, 18 and PFS. RESULTS: Between June 2016 and August 2018, 33 patients with advanced melanoma have been included and 32 were randomized. Grade 3-4 TRAE were observed in 12%, 12%, 50%, and 63% of patients in cohort 1, 2, 3, and 4, respectively. All planned targeted therapy was given in 88%, 63%, and 38% of patients in cohort 2, 3, and 4. ORR at week 6, 12, and 18 were 38%, 63%, and 63% in cohort 1; 25%, 63%, and 75% in cohort 2; 25%, 50%, and 75% in cohort 3; and 0%, 63%, and 50% in cohort 4. After a median follow-up of 43.5 months, median PFS was 10.6 months for pembrolizumab monotherapy and not reached for patients treated with pembrolizumab and intermittent dabrafenib and trametinib (p=0.17). The 2-year and 3-year landmark PFS were both 25% for cohort 1, both 63% for cohort 2, 50% and 38% for cohort 3 and 75% and 60% for cohort 4. CONCLUSIONS: The combination of pembrolizumab plus intermittent dabrafenib and trametinib seems more feasible and tolerable than continuous triple therapy. The efficacy is promising and appears to be favorable over pembrolizumab monotherapy. TRIAL REGISTRATION NUMBER: NCT02625337.