Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Dev Dyn ; 252(11): 1338-1362, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37259952

RESUMO

BACKGROUND: A goal of developmental genetics is to identify functional interactions that underlie phenotypes caused by mutations. We sought to identify functional interactors of Vsx2, which when mutated, disrupts early retinal development. We utilized the Vsx2 loss-of-function mouse, ocular retardation J (orJ), to assess interactions based on principles of positive and negative epistasis as applied to bulk transcriptome data. This was first tested in vivo with Mitf, a target of Vsx2 repression, and then to cultures of orJ retina treated with inhibitors of Retinoid-X Receptors (RXR) to target Rxrg, an up-regulated gene in the orJ retina, and gamma-Secretase, an enzyme required for Notch signaling, a key mediator of retinal proliferation and neurogenesis. RESULTS: Whereas Mitf exhibited robust positive epistasis with Vsx2, it only partially accounts for the orJ phenotype, suggesting other functional interactors. RXR inhibition yielded minimal evidence for epistasis between Vsx2 and Rxrg. In contrast, gamma-Secretase inhibition caused hundreds of Vsx2-dependent genes associated with proliferation to deviate further from wild-type, providing evidence for convergent negative epistasis with Vsx2 in regulating tissue growth. CONCLUSIONS: Combining in vivo and ex vivo testing with transcriptome analysis revealed quantitative and qualitative characteristics of functional interaction between Vsx2, Mitf, RXR, and gamma-Secretase activities.


Assuntos
Proteínas de Homeodomínio , Fatores de Transcrição , Camundongos , Animais , Fatores de Transcrição/genética , Proteínas de Homeodomínio/genética , Secretases da Proteína Precursora do Amiloide/genética , Retina , Neurogênese/fisiologia
2.
BMC Plant Biol ; 23(1): 664, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129793

RESUMO

BACKGROUND: Drought is one of the important abiotic stresses that can significantly reduce crop yields. In India, about 24% of Brassica juncea (Indian mustard) cultivation is taken up under rainfed conditions, leading to low yields due to moisture deficit stress. Hence, there is an urgent need to improve the productivity of mustard under drought conditions. In the present study, a set of 87 B. carinata-derived B. juncea introgression lines (ILs) was developed with the goal of creating drought-tolerant genotypes. METHOD: The experiment followed the augmented randomized complete block design with four blocks and three checks. ILs were evaluated for seed yield and its contributing traits under both rainfed and irrigated conditions in three different environments created by manipulating locations and years. To identify novel genes and alleles imparting drought tolerance, Quantitative Trait Loci (QTL) analysis was carried out. Genotyping-by-Sequencing (GBS) approach was used to construct the linkage map. RESULTS: The linkage map consisted of 5,165 SNP markers distributed across 18 chromosomes and spanning a distance of 1,671.87 cM. On average, there was a 3.09 cM gap between adjoining markers. A total of 29 additive QTLs were identified for drought tolerance; among these, 17 (58.6% of total QTLs detected) were contributed by B. carinata (BC 4), suggesting a greater contribution of B. carinata towards improving drought tolerance in the ILs. Out of 17 QTLs, 11 (64.7%) were located on the B genome, indicating more introgression segments on the B genome of B. juncea. Eight QTL hotspots, containing two or more QTLs, governing seed yield contributing traits, water use efficiency, and drought tolerance under moisture deficit stress conditions were identified. Seventeen candidate genes related to biotic and abiotic stresses, viz., SOS2, SOS2 like, NPR1, FAE1-KCS, HOT5, DNAJA1, NIA1, BRI1, RF21, ycf2, WRKY33, PAL, SAMS2, orf147, MAPK3, WRR1 and SUS, were reported in the genomic regions of identified QTLs. CONCLUSIONS: The significance of B. carinata in improving drought tolerance and WUE by introducing genomic segments in Indian mustard is well demonstrated. The findings also provide valuable insights into the genetic basis of drought tolerance in mustard and pave the way for the development of drought-tolerant varieties.


Assuntos
Resistência à Seca , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Fenótipo , Genótipo , Mostardeira/genética
3.
Environ Res ; 231(Pt 3): 116276, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37257749

RESUMO

Every year 30-50% of crops suffer from fungal and bacterial diseases. Use of various chemically synthesized fungicides and bactericides make the soil environment more toxic and harmful to the plant health. Therefore, there is need to find non-toxic and cost effective alternative against plant pathogen. In recent years, nanotechnology has got attention because of its wide application in different areas of agriculture. Various nanoparticles have been used in agriculture for their fertilizing and antimicrobial potential. Among them zinc oxide nanoparticles (ZnO NPs) have gained the attention of agriculturists as zinc is an essential micronutrient for plants. Antifungal activity of Tb-ZnO NPs (Terminalia bellerica synthesized zinc oxide nanoparticles) against Alternaria brassicae causative agent of blight disease in Brassica juncea has been reported in our previous study. To use Tb-ZnO NPs as nanofungicides and simultaneously as nanofertilizers, the doses of Tb-ZnO NPs beneficial to the Brassica juncea crop is need to be known. Therefore, experiment has been designed to see the protective and curative potential of Tb-ZnO NPs in alluvial and calcareous soil. Biochemical constituents and stress enzymes analysis has shown significant potential of Tb-ZnO NPs at 200 ppm concentration in alleviating the stress caused by A. brassicae by modulating the photosynthetic, biochemical and enzymatic characteristics. Growth parameter analysis confirmed the role of Tb-ZnO NPs in increasing root and shoot length of B. juncea. Yield component such as seed number, seed weight and oil content of B. juncea crop also has been increased. There was one-fold increase in oil content of B. juncea as compared to control. Maximum percent disease control was found to be 70% in alluvial soil (protective method) grown plants. Therefore, present study supports the hypothesis of a relationship between nutrients and disease suppression.


Assuntos
Nanopartículas , Óxido de Zinco , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Zinco , Nanopartículas/química , Plantas , Solo
4.
Theor Appl Genet ; 135(12): 4151-4167, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36136128

RESUMO

Crop wild relatives (CWRs) are weedy and wild relatives of the domesticated and cultivated crops, which usually occur and are maintained in natural forms in their centres of origin. These include the ancestors or progenitors of all cultivated species and comprise rich sources of diversity for many important traits useful in plant breeding. CWRs can play an important role in broadening genetic bases and introgression of economical traits into crops, but their direct use by breeders for varietal improvement program is usually not advantageous due to the presence of crossing or chromosome introgression barriers with cultivated species as well as their high frequencies of agronomically undesirable alleles. Linkage drag may subsequently result in unfavourable traits in the subsequent progeny when segments of the genome linked with quantitative trait loci (QTL), or a phenotype, are introgressed from wild germplasm. Here, we first present an overview in regards to the contribution that wild species have made to improve biotic, abiotic stress tolerances and yield-related traits in crop varieties, and secondly summarise the various challenges which are experienced in interspecific hybridization along with their probable solutions. We subsequently suggest techniques for readily harnessing these wild relatives for fast and effective introgression of exotic alleles in pre-breeding research programs.


Assuntos
Melhoramento Vegetal , Locos de Características Quantitativas , Hibridização Genética , Produtos Agrícolas/genética , Fenótipo
5.
Dev Biol ; 400(1): 72-81, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25645681

RESUMO

Precise regulation of Notch signaling is essential for normal vertebrate development. Mind bomb (Mib) is a ubiquitin ligase that is required for activation of Notch by Notch׳s ligand, Delta. Sorting Nexin 5 (SNX5) co-localizes with Mib and Delta complexes and has been shown to directly bind to Mib. We show that microRNA-216a (miR-216a) is expressed in the retina during early development and regulates snx5 to precisely regulate Notch signaling. miR-216a and snx5 have complementary expression patterns. Knocking down miR-216a and/or overexpression of snx5 resulted in increased Notch activation. Conversely, knocking down snx5 and/or miR-216a overexpression caused a decrease in Notch activation. We propose a model in which SNX5, precisely controlled by miR-216a, is a vital partner of Mib in promoting endocytosis of Delta and subsequent activation of Notch signaling.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , MicroRNAs/metabolismo , Retina/embriologia , Transdução de Sinais/fisiologia , Nexinas de Classificação/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Análise de Variância , Animais , Clonagem Molecular , Primers do DNA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Silenciamento de Genes , Processamento de Imagem Assistida por Computador , Immunoblotting , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , MicroRNAs/genética , Análise em Microsséries , Modelos Biológicos , Receptores Notch/metabolismo , Retina/metabolismo , Transdução de Sinais/genética
6.
Protoplasma ; 261(2): 367-376, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37910230

RESUMO

The haploid and doubled haploid plants serve as valuable tools for breeders due to their ability to expedite the mapping of genes of agronomic importance, as well as accelerate the breeding cycle for generation of novel hybrids and improved homogenous varieties. Successful anther/microspore culture largely depends on the use of microspores at appropriate developmental stages at the time of culture, which can be specific for each plant species and genotype. In the present study, we described the visible morphological characteristics of flower buds and anthers at different developmental stages to identify the optimal microspore stage within the anther/buds of two pepper hybrids, Indra and Lakshmi. This information enabled us to predict the suitable microspore stage for successful haploid production. To enhance the visualization of nuclei in the pepper microspores, different concentrations of FeCl3 were employed as a mordant to Carnoy's fixative I, followed by DAPI staining. A clear and distinct nucleus was observed using DAPI staining procedures in the pepper microspores when fixed in Carnoy's solution containing ferric chloride (40-90 µl) as mordant. The use of mordant thus facilitated the efficient cytological analysis of the pepper microspores. Present results indicate that, to achieve efficient haploid production, flower buds with an average length of 4.4 to 5.02 mm for the hybrid Indra and 5.15 to 5.40 mm for the hybrid Lakshmi should be utilized. Additionally, these buds should have a calyx covering approximately 80-90% of the total bud length. We observed that in such buds, microspores are in the late-uninucleate and early binucleate stage which has been reported to be the most conducive stage for androgenesis induction in pepper.


Assuntos
Gametogênese Vegetal , Indóis , Melhoramento Vegetal , Fixadores , Genótipo , Haploidia
7.
Sci Rep ; 14(1): 2346, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38282114

RESUMO

The study presents the first to characterize novel Erucastrum canarianse Webb and Berthel (or Can) sterile cytoplasm-based CMS lines in Indian cauliflower (Brassica oleracea var. botrytis L.) and investigating their commercial suitability. Eleven Can-based CMS lines were examined for 12 agro-morphological and yield traits,18 floral traits, four seed yield traits together with three each of the Ogura (source: wild Japanese Radish) and Tour (Source: Brassica tournefortii) cytoplasms. All of the recorded floral and seed traits showed significant (P > 0.05) differences between the CMS lines of each group. Agro-morphological and yield traits in CMS lines and their maintainers, however, were non-significantly different. All the Can- and Ogura-based CMS lines showed flowering and appropriate seed formation by natural cross-pollination. Only two Tour cytoplasm-based CMS lines, Tour (DC-41-5) and Tour (DC-67), produced the smallest malformed flowers and stigma. The highest seed yield per plant in CMS lines was in Ogu (DC-98-4) and the lowest in Tour (DC-67). P14 and P15, two polymorphic mtDNA markers, were discovered for the Can CMS system for early detection. Five primers (ITS5a-ITS4, atpF-atpH, P16, rbeL and trnL), along with their maintainers, were sequenced and aligned to detect nucleotide changes including as additions and or deletions at different positions. The newly introduced E. canariense sterile cytoplasm-based CMS system in cauliflower is the subject of the first comprehensive report, which emphasises their potential as a further stable and reliable genetic mechanism for hybrid breeding.


Assuntos
Brassica , Raphanus , Brassica/genética , Melhoramento Vegetal , Citoplasma/genética , Citosol , Fenótipo , Infertilidade das Plantas/genética
8.
Life (Basel) ; 13(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36983893

RESUMO

Wild species are weedy relatives and progenitors of cultivated crops, usually maintained in their centres of origin. They are rich sources of diversity as they possess many agriculturally important traits. In this study, we analysed 25 wild species and 5 U triangle species of Brassica for their potential tolerance against heat and drought stress during germination and in order to examine the early seedling stage. We identified the germplasms based on the mean membership function value (MFV), which was calculated from the tolerance index of shoot length, root length, and biochemical analysis. The study revealed that B. napus (GSC-6) could withstand high temperatures and drought. Other genotypes that were tolerant to the impact of heat stress were B. tournefortii (RBT 2002), D. gomez-campoi, B. tournefortii (Rawa), L. sativum, and B. carinata (PC-6). C. sativa resisted drought but did not perform well when subjected to high temperatures. Tolerance to drought was observed in B. fruticulosa (Spain), B. tournefortii (RBT 2003), C. bursa-pastoris (late), D. muralis, C. abyssinica (EC694145), C. abyssinica (EC400058) and B. juncea (Pusa Jaikisan). This investigation contributes to germplasm characterization and the identification of the potential source of abiotic stress tolerance in the Brassica breeding programme. These identified genotypes can be potential sources for transferring the gene(s)/genomic regions that determine tolerance to the elite cultivars.

9.
Sci Rep ; 12(1): 21855, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528657

RESUMO

White mold commonly known as Sclerotinia sclerotiorum causes stem rot disease and has emerged as one of the major fungal pathogens of oilseed Brassica across the world. In the present study, consistently virulent S. sclerotiorum isolate "ESR-01" was sequenced and an assembly size of ~ 41 Mb with 328 scaffolds having N50 of 447,128 was obtained. Additionally, 27,450 single nucleotide polymorphisms (SNPs) were identified from 155 scaffolds against S. sclerotiorum 1980 isolate, with an average SNP density of ~ 1.5 per kb genome. 667 repetitive elements were identified and approximately comprised 7% of the total annotated genes. The DDE_1 with 454 in numbers was found to be the most abundant and accounts for 68% of the total predicted repetitive elements. In total, 3844 simple sequence repeats are identified in the 328 scaffolds. A total of 9469 protein-coding genes were predicted from the whole genome assembly with an average gene length of 1587 bp and their distribution as 230.95 genes per Mb in the genome. Out of 9469 predicted protein-coding genes, 529 genes were observed encoding the CAZymes (Carbohydrate-Active enzymes) capable of degradation of the complex polysaccharides. Glycosyltransferase (GT) families were most abundant (49.71%) among the predicted CAZymes and GT2 (23%), GT4 (20%), and glycoside hydrolase (GH) 23% with GH18 (11%) were the prominent cell wall degrading enzyme families in the ESR-01 secretome. Besides this, 156 genes essential for the pathogen-host interactions were also identified. The effector analysis in the whole genome proteomics dataset revealed a total of 57 effector candidates (ECs) and 27 of them were having their analogs whereas the remaining 30 were novel ones. Eleven selected ECs were validated experimentally by analyzing the expression profile of the ESR-01 isolate of S. sclerotiorum. Together, the present investigation offers a better understanding of the S. sclerotiorum genome, secretome, and its effector repertoire which will help in refining the present knowledge on S. sclerotiorum-Brassica interactions and necrotrophic lifestyle of the phytopathogen in general.


Assuntos
Ascomicetos , Brassica , Especificidade de Hospedeiro , Secretoma , Mapeamento Cromossômico , Brassica/genética , Doenças das Plantas/microbiologia
10.
Toxics ; 9(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34437500

RESUMO

Cadmium (Cd) is a hazardous heavy metal, toxic to our ecosystem even at low concentrations. Cd stress negatively affects plant growth and development by triggering oxidative stress. Limited information is available on the role of iron (Fe) in ameliorating Cd stress tolerance in legumes. This study assessed the effect of Cd stress in two lentil (Lens culinaris Medik.) varieties differing in seed Fe concentration (L4717 (Fe-biofortified) and JL3) under controlled conditions. Six biochemical traits, five growth parameters, and Cd uptake were recorded at the seedling stage (21 days after sowing) in the studied genotypes grown under controlled conditions at two levels (100 µM and 200 µM) of cadmium chloride (CdCl2). The studied traits revealed significant genotype, treatment, and genotype × treatment interactions. Cd-induced oxidative damage led to the accumulation of hydrogen peroxide (H2O2) and malondialdehyde in both genotypes. JL3 accumulated 77.1% more H2O2 and 75% more lipid peroxidation products than L4717 at the high Cd level. Antioxidant enzyme activities increased in response to Cd stress, with significant genotype, treatment, and genotype × treatment interactions (p < 0.01). L4717 had remarkably higher catalase (40.5%), peroxidase (43.9%), superoxide dismutase (31.7%), and glutathione reductase (47.3%) activities than JL3 under high Cd conditions. In addition, L4717 sustained better growth in terms of fresh weight and dry weight than JL3 under stress. JL3 exhibited high Cd uptake (14.87 mg g-1 fresh weight) compared to L4717 (7.32 mg g-1 fresh weight). The study concluded that the Fe-biofortified lentil genotype L4717 exhibited Cd tolerance by inciting an efficient antioxidative response to Cd toxicity. Further studies are required to elucidate the possibility of seed Fe content as a surrogacy trait for Cd tolerance.

11.
Plants (Basel) ; 10(12)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34961197

RESUMO

Nanotechnology has gained popularity in recent years owing to its established potential for application and implementation in various sectors such as medical drugs, medicine, catalysis, energy, material, and plant science. Nanoparticles (NPs) are smaller in size (1-100 nm) with a larger surface area and have many fruitful applications. The extraordinary functions of NPs are utilized in sustainable agriculture due to nano-enabled products, e.g., nano-insecticides, nano-pesticides, and nano-fertilizers. Nanoparticles have lately been suggested as an alternate method for controlling plant pests such as insects, fungi, and weeds. Several NPs exhibit antimicrobial properties considered in food packaging processes; for example, Ag-NPs are commonly used for such purposes. Apart from their antimicrobial properties, NPs such as Si, Ag, Fe, Cu, Al, Zn, ZnO, TiO2, CeO2, Al2O3, and carbon nanotubes have also been demonstrated to have negative impacts on plant growth and development. This review examines the field-use of nano-enabled products in sustainable agriculture, future perspectives, and growing environmental concerns. The remarkable information on commercialized nano-enabled products used in the agriculture and allied sectors are also provided.

12.
J Microbiol Methods ; 175: 105983, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32544486

RESUMO

The field assessment technique to evaluate the plants with a fungal phytopathogen for their tolerance to the disease is one of the crucial steps in dissecting their genetic control and in developing the resistant crop varieties. The objective behind this study was to develop and evaluate a field-based non-injury method of inoculation technique for Sclerotinia stem rot (SSR) in oilseed Brassica, caused by Sclerotinia sclerotiorum (Lib.) de Bary. The non-injury method of screening technique involves stem inoculation using a five days old mycelial mat on potato dextrose agar (PDA) plug placed on the top of sterile water-soaked cotton pad firmly wrapped over the internodal region with parafilm at the basal portion of the stem (15-20 cm above the ground) in the field. Inoculation without injury substantiates the natural means of infection in the field and the use of moist cotton pad keeps humidity for longer to initiate infection even in case of adverse climatic conditions. Disease development on the inoculated stem was measured by the length and width of the lesion. The symptom appears with water-soaked lesion formation and spreading deeper and wider on the stem in >90% of inoculated plants. During the experiment, about 800 Brassica germplasms including their wild relatives were screened and evaluated for three consecutive years using near-natural (non-injury) method of disease inoculation in the field. The Inoculation severity index (ISI) obtained during these years at Pusa, New Delhi were significantly similar and correlated with the natural infection measured in terms of disease severity index (DSI) on selected germplasm in the sick plot at ICAR-DRMR, Bharatpur. The significant correlations obtained among the used Brassica lines that were earlier not subjected for natural screening suggest the potential of this technique in evaluating the breeding material for SSR before confirmation with natural infection in the field.


Assuntos
Agricultura/métodos , Ascomicetos , Brassica/microbiologia , Resistência à Doença , Micoses , Doenças das Plantas , Ascomicetos/patogenicidade , Micoses/microbiologia , Micoses/prevenção & controle , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
13.
J Conserv Dent ; 23(2): 163-168, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33384489

RESUMO

BACKGROUND: Chemomechanical caries removal has been a new leaf for caries excavation in this ultraconservative era of dentistry. BRIX3000 & Carie Care are papain based gel formulations while Smart Burs are polymer burs with self limiting ability. AIM: To compare & evaluate the caries excavation efficacy of BRIX3000, Carie Care & Smart burs. MATERIALS & METHODS: 45 patients with wide class 1 carious lesions were selected and equally divided into 3 groups: BRIX 3000, Carie Care & Smart Burs. Caries excavation was performed in accordance with manufacturer's instructions in each group & evaluation for reduction in bacterial count & mean working time was done. STATISTICAL ANALYSIS: Data was analysed by One way ANOVA, Paired t-Test & Tukey's Post Hoc test. RESULTS: The highest reduction in bacterial count was achieved by BRIX3000(156.93 × 104) followed by Smart Burs(139.07× 104)& Carie Care(135.80×104) with p>0.5. Mean working time in minutes for excavation was: BRIX3000(13.66), Carie Care(18.30) &Smart Burs(20.60) with p< 0.5. CONCLUSION: All the techniques reduced bacterial count potentially. BRIX 3000 proves the most effective among three.

14.
J Oral Maxillofac Pathol ; 24(1): 186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508477

RESUMO

AIM AND OBJECTIVES: The study aimed at assessment of microwave assisted tissue fixation, processing and staining and to determine if it can replace standard formalin fixed paraffin embedded processing in tissues of different thickness. MATERIALS AND METHODS: Specimens from buccal mucosa and gingiva was used in the study and were divided into three different thickness and was fixed, processed and stained according to conventional method and with a use of kitchen microwave oven respectively. The present study is the first of its kind where oral tissues was fixed, processed and stained with a kitchen microwave in three different thickness. The results obtained was statistically analyzed using IBM SPSS Statistics version 21.0 software. RESULTS: The new technique of fixation, tissue processing and staining using a microwave employed in the present study represented a major change from conventional method and achieved significant reduction in time taken. CONCLUSION: The ease of application and speed of this technique significantly reduced turnaround time in diagnostic labs.

16.
Neuroscience ; 414: 99-111, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31271831

RESUMO

Varicella zoster virus (VZV) results in chicken pox and herpes zoster. Female rats show a higher level of herpes zoster associated pain than males, consistent with human studies. In this study, we addressed the novel hypothesis that sex difference in herpes zoster associated pain is due, in part, to estradiol modulating activity in the thalamus. To test this hypothesis a high and low physiological dose of estradiol was administered to castrated and ovariectomized rats and the affective pain response was measured after injection of VZV into the whisker pad. Thalamic infusion of the estrogen receptor antagonist ICI 182,780 concomitant with a high dose of estradiol addressed the role of estradiol binding to its receptor to effect pain. Phosphorylated extracellular signal-regulated protein kinase (pERK) positive cells were measured in excitatory (glutaminase positive) and inhibitory (glutamate decarboxylase 67 positive) cells of the lateral thalamic region. Our results show that a high dose of estradiol significantly reduced the pain response in both males and females. pERK significantly increased in excitatory cells after treatment with a low dose of estradiol and increased in inhibitory cells after treatment with a high dose of estradiol. Administration of ICI 182,780 significantly increased the pain response, reduced expression of GABA related genes in the thalamic region and significantly reduced the number of inhibitory cells expressing pERK. The results suggest that estradiol attenuates herpes zoster pain by increasing the activity of inhibitory neurons within the thalamus and that this reduction includes an estrogen receptor dependent mechanism.


Assuntos
Estradiol/uso terapêutico , Núcleos Laterais do Tálamo/efeitos dos fármacos , Neuralgia Pós-Herpética/tratamento farmacológico , Dor/tratamento farmacológico , Infecção pelo Vírus da Varicela-Zoster/complicações , Animais , Estradiol/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Fulvestranto/farmacologia , Herpesvirus Humano 3 , Núcleos Laterais do Tálamo/metabolismo , Masculino , Camundongos , Neuralgia Pós-Herpética/metabolismo , Dor/etiologia , Dor/metabolismo , Fosforilação
17.
Front Integr Neurosci ; 12: 46, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30369871

RESUMO

Herpes zoster or shingles is the result of varicella zoster virus (VZV) infection and often results in chronic pain that lasts for months after visible symptoms subside. Testosterone often attenuates pain in males. Previous work demonstrates ovarian estrogen effects γ-aminobutyric acid (GABA) signaling in the thalamus, reducing pain but the role of testosterone within the thalamus is currently unknown. Because aromatase affects pain and is present in the thalamus we tested a hypothesis that testosterone converted to estrogen in the thalamus attenuates herpes zoster induced pain. To address this hypothesis, male Sprague-Dawley rats received whisker pad injection of either MeWo cells or MeWo cells containing VZV. To reduce aromatase derived estrogen in these animals we injected aromatase inhibitor letrozole systemically or infused it into the thalamus. To test if estrogen was working through the estrogen receptor (ER) agonist, 4, 4', 4″-(4-Propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) was infused concomitant with letrozole. Motivational and affective pain was measured after letrozole and/or PPT treatment. Vesicular GABA transporter (VGAT) is important in pain signaling. Because estrogen effects VGAT expression we measured its transcript and protein levels after letrozole treatment. Virus injection and letrozole significantly increased the pain response but thalamic infusion of PPT reduced zoster pain. Letrozole increased the number of thalamic neurons staining for phosphorylated ERK (pERK) but decreased VGAT expression. The results suggest in male rats aromatase derived estradiol interacts with the ER to increase VGAT expression and increase neuronal inhibition in the thalamus to attenuate VZV induced pain.

19.
Front Microbiol ; 9: 1169, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922259

RESUMO

White mold or stem rot disease are ubiquitously distributed throughout the world and the causal organism of this disease Sclerotinia sclerotiorum (Lib.) de Bary, is known to infect over 400 plant species. Sclerotinia stem rot is one of the most devastating fungal diseases and poses a serious threat to the worldwide cultivation of oilseed Brassica including India. S. sclerotiorum pathogen usually infects the stem but in severe cases leaves and pods also affected at different developmental stages that deteriorate not only the oil quality but also causing the seed and oil yield losses up to 90% depending on the severity of the disease infestation. This study investigated the morphological and molecular characterization of pathogenic S. sclerotiorum (Lib) de Bary geographical isolates from oilseed Brassica including Brassica juncea (Indian mustard). The aim of this study was to compare isolates of S. sclerotiorum originated from different agro-climatic conditions and to analyse similarity or differences between them as well as to examine the virulence of this pathogen specifically in Brassica for the first time. The collection of S. sclerotiorum isolates from symptomatic Brassica plants was done and analyzed for morphological features, and molecular characterization. The virulence evaluation test of 65 isolates on four Brassica cultivars has shown 5 of them were highly virulent, 46 were virulent and 14 were moderately virulent. Phylogenetic analysis encompassing all the morphological features, SSR polymorphism, and ITS sequencing has shown the existence of high genetic diversity among the isolates that categorized all the isolates in three evolutionary lineages in the derived dendrogram. Further, genetic variability analysis based on sequences variation in ITS region of all the isolates has shown the existence of either insertions or deletions of the nucleotides in the ITS region has led to the interspecies variability and observed the variation were in a clade-specific manner. Together this analysis observed the existence of higher heterogeneity and genetic variability in S. sclerotiorum isolates collection and indicates the presence of clonal and sexual progenies of the pathogen in the mustard growing regions of India surveyed in this study. With a higher level of genetic variability and diversity among the S. sclerotiorum population needs robust screening approaches to identify the donor parent and utilize them in resistance breeding program for effectively counter the menace of stem rot disease in Brassica.

20.
Dev Cell ; 44(1): 13-28.e3, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29249622

RESUMO

The optic neuroepithelial continuum of vertebrate eye develops into three differentially growing compartments: the retina, the ciliary margin (CM), and the retinal pigment epithelium (RPE). Neurofibromin 2 (Nf2) is strongly expressed in slowly expanding RPE and CM compartments, and the loss of mouse Nf2 causes hyperplasia in these compartments, replicating the ocular abnormalities seen in human NF2 patients. The hyperplastic ocular phenotypes were largely suppressed by heterozygous deletion of Yap and Taz, key targets of the Nf2-Hippo signaling pathway. We also found that, in addition to feedback transcriptional regulation of Nf2 by Yap/Taz in the CM, activation of Nf2 expression by Mitf in the RPE and suppression by Sox2 in retinal progenitor cells are necessary for the differential growth of the corresponding cell populations. Together, our findings reveal that Nf2 is a key player that orchestrates the differential growth of optic neuroepithelial compartments during vertebrate eye development.


Assuntos
Cílios/fisiologia , Hiperplasia/patologia , Células-Tronco Neurais/citologia , Neurofibromina 2/fisiologia , Organogênese/fisiologia , Epitélio Pigmentado da Retina/citologia , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular , Linhagem da Célula , Polaridade Celular , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Via de Sinalização Hippo , Humanos , Hiperplasia/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco Neurais/fisiologia , Fenótipo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Epitélio Pigmentado da Retina/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA