Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(4): 3472-3484, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36637052

RESUMO

Orotate phosphoribosyltransferase (OPRT) catalyses the reversible phosphoribosyl transfer from α-D-5-phosphoribosyl-1-pyrophosphate (PRPP) to orotic acid (OA) to yield orotidine 5'-monophosphate (OMP) during the de novo synthesis of nucleotides. Numerous studies have reported the inhibition of this reaction as a strategy to check diseases like tuberculosis, malaria and cancer. Insight into the inhibition of this reaction is, therefore, of urgent interest. In this study, we implemented a QM/MM framework on OPRT derived from Saccharomyces cerevisiae to obtain insights into the competitive binding of OA and OA-mimetic inhibitors by quantifying their interactions with OPRT. 4-Hydroxy-6-methylpyridin-2(1H) one showed the best inhibiting activity among the structurally similar OA-mimetic inhibitors, as quantified from the binding energetics. Our analysis of protein-ligand interactions unveiled the association of this inhibitory ligand with a strong network of hydrogen bonds, a large contribution of hydrophobic contacts, and bridging water molecules in the binding site. The ortho-substituted CH3 group in the compound resulted in a large population of π-electrons in the aromatic ring of this inhibitor, supporting the ligand binding further.


Assuntos
Orotato Fosforribosiltransferase , Ácido Orótico , Ácido Orótico/metabolismo , Ligantes , Orotato Fosforribosiltransferase/química , Orotato Fosforribosiltransferase/metabolismo , Sítios de Ligação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA