Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 12(39): 12427-9, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20737098

RESUMO

We have investigated the fundamental amidation reaction by a model system consisting of an electrochemically functionalised Au surface by aminophenyl and 4-nitrobenzoic acid activated by EEDQ. The development of the NO(2) related stretching vibrations with time reveals that the amidation process is very slow at Au surfaces and is completed after about 2 days.


Assuntos
Amidas/química , Compostos de Anilina/química , Ouro/química , Nitrobenzoatos/química , Quinolinas/química , Eletroquímica , Oxirredução , Espectrofotometria Infravermelho , Propriedades de Superfície
2.
J Phys Chem B ; 110(3): 1332-7, 2006 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-16471682

RESUMO

The electrochemical grafting process of 4-nitrobenzene and 4-methoxybenzene (anisole) from diazonium salt solutions has been investigated in situ by monitoring the current density, the band bending, and the nonradiative surface recombination during grafting at different potentials and different concentrations of the diazonium salt in the solution. Ex situ infrared spectroscopic ellipsometry has been used to inspect the Si surface species before and after the grafting process. The band bending decreases with either increasing concentration of diazonium salt or when the redox potential of the diazonium compound (anisole) is nearer to the competing H+/H2 couple. The surface recombination increases at more cathodic potentials if an electron donor group is present at the phenyl ring (nitrobenzene) and vice versa for the electron acceptor group (anisole). The influence of side reactions can be reduced by use of moderate concentration and moderate or strong cathodic potential, depending on the redox potential of the diazonium compound.


Assuntos
Compostos de Diazônio/química , Silício/química , Eletroquímica , Elétrons , Oxirredução , Propriedades de Superfície , Fatores de Tempo
3.
Acta Biomater ; 9(3): 5838-44, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23117146

RESUMO

In the present study we investigated the preparation of biofunctionalized surfaces using the direct electrochemical grafting of maleimidophenyl molecules with subsequent covalent immobilization of specific peptide to detect target antibody, thereby extending the application of the biosensing systems towards immunodiagnostics. Para-maleimidophenyl (p-MP) functional groups were electrochemically grafted on gold and silicon surfaces from solutions of the corresponding diazonium salt. A specially synthesized peptide modified with cysteine (Cys-peptide) was then immobilized on the p-MP grafted substrates by cross-linking between the maleimide groups and the sulfhydryl group of the cysteine residues. Accordingly, the Cys-peptide worked as an antigen that was able to bind specifically the target antibody (anti-GST antibody), while it was non-sensitive to a negative contrast antibody (i.e. anti-Flag ß). The immobilization of both specific and non-specific antibodies on the Cys-peptide-modified surfaces was monitored by infrared spectroscopic ellipsometry, a quartz crystal microbalance integrated in flow injection analysis system and potentiometric response. The results obtained clearly demonstrated that the direct modification of a surface with maleimidophenyl provides a very simple and reliable way of preparing biofunctionalized surfaces suitable for the construction of immunological biosensors.


Assuntos
Anticorpos/imunologia , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Ouro/química , Maleimidas/química , Silício/química , Cisteína/metabolismo , Eletrodos , Proteínas Imobilizadas/metabolismo , Peptídeos/metabolismo , Espectrofotometria Infravermelho , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA