Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Trials ; 7(1 Suppl): S75-87, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20595243

RESUMO

BACKGROUND: Although human leukocyte antigen (HLA) DQ and DR loci appear to confer the strongest genetic risk for type 1 diabetes, more detailed information is required for other loci within the HLA region to understand causality and stratify additional risk factors. The Type 1 Diabetes Genetics Consortium (T1DGC) study design included high-resolution genotyping of HLA-A, B, C, DRB1, DQ, and DP loci in all affected sibling pair and trio families, and cases and controls, recruited from four networks worldwide, for analysis with clinical phenotypes and immunological markers. PURPOSE: In this article, we present the operational strategy of training, classification, reporting, and quality control of HLA genotyping in four laboratories on three continents over nearly 5 years. METHODS: Methods to standardize HLA genotyping at eight loci included: central training and initial certification testing; the use of uniform reagents, protocols, instrumentation, and software versions; an automated data transfer; and the use of standardized nomenclature and allele databases. We implemented a rigorous and consistent quality control process, reinforced by repeated workshops, yearly meetings, and telephone conferences. RESULTS: A total of 15,246 samples have been HLA genotyped at eight loci to four-digit resolution; an additional 6797 samples have been HLA genotyped at two loci. The genotyping repeat rate decreased significantly over time, with an estimated unresolved Mendelian inconsistency rate of 0.21%. Annual quality control exercises tested 2192 genotypes (4384 alleles) and achieved 99.82% intra-laboratory and 99.68% inter-laboratory concordances. LIMITATIONS: The chosen genotyping platform was unable to distinguish many allele combinations, which would require further multiple stepwise testing to resolve. For these combinations, a standard allele assignment was agreed upon, allowing further analysis if required. CONCLUSIONS: High-resolution HLA genotyping can be performed in multiple laboratories using standard equipment, reagents, protocols, software, and communication to produce consistent and reproducible data with minimal systematic error. Many of the strategies used in this study are generally applicable to other large multi-center studies.


Assuntos
Diabetes Mellitus Tipo 1/genética , Genótipo , Antígenos HLA/genética , Cooperação Internacional , Algoritmos , Bioensaio , Técnicas de Laboratório Clínico , Diabetes Mellitus Tipo 1/epidemiologia , Educação , Saúde Global , Antígenos HLA/análise , Humanos , Linhagem , Polimorfismo Genético , Controle de Qualidade , Medição de Risco
2.
Diabetes ; 59(11): 2972-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20798335

RESUMO

OBJECTIVE: We report here genotyping data and type 1 diabetes association analyses for HLA class I loci (A, B, and C) on 1,753 multiplex pedigrees from the Type 1 Diabetes Genetics Consortium (T1DGC), a large international collaborative study. RESEARCH DESIGN AND METHODS: Complete eight-locus HLA genotyping data were generated. Expected patient class I (HLA-A, -B, and -C) allele frequencies were calculated, based on linkage disequilibrium (LD) patterns with observed HLA class II DRB1-DQA1-DQB1 haplotype frequencies. Expected frequencies were compared to observed allele frequencies in patients. RESULTS: Significant type 1 diabetes associations were observed at all class I HLA loci. After accounting for LD with HLA class II, the most significantly type 1 diabetes-associated alleles were B*5701 (odds ratio 0.19; P = 4 × 10(-11)) and B*3906 (10.31; P = 4 × 10(-10)). Other significantly type 1 diabetes-associated alleles included A*2402, A*0201, B*1801, and C*0501 (predisposing) and A*1101, A*3201, A*6601, B*0702, B*4403, B*3502, C*1601, and C*0401 (protective). Some alleles, notably B*3906, appear to modulate the risk of all DRB1-DQA1-DQB1 haplotypes on which they reside, suggesting a class I effect that is independent of class II. Other class I type 1 diabetes associations appear to be specific to individual class II haplotypes. Some apparent associations (e.g., C*1601) could be attributed to strong LD to another class I susceptibility locus (B*4403). CONCLUSIONS: These data indicate that HLA class I alleles, in addition to and independently from HLA class II alleles, are associated with type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença , Antígenos de Histocompatibilidade Classe I/genética , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Éxons , Feminino , Frequência do Gene , Antígenos HLA-A/genética , Antígenos HLA-B/genética , Antígenos HLA-C/genética , Humanos , Células Secretoras de Insulina/patologia , Desequilíbrio de Ligação , Masculino , Polimorfismo Genético , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA