Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Inform ; 133: 104166, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35985620

RESUMO

Vancomycin is a commonly used antimicrobial in hospitals, and therapeutic drug monitoring (TDM) is required to optimize its efficacy and avoid toxicities. Bayesian models are currently recommended to predict the antibiotic levels. These models, however, although using carefully designed lab observations, were often developed in limited patient populations. The increasing availability of electronic health record (EHR) data offers an opportunity to develop TDM models for real-world patient populations. Here, we present a deep learning-based pharmacokinetic prediction model for vancomycin (PK-RNN-V E) using a large EHR dataset of 5,483 patients with 55,336 vancomycin administrations. PK-RNN-V E takes the patient's real-time sparse and irregular observations and offers dynamic predictions. Our results show that RNN-PK-V E offers a root mean squared error (RMSE) of 5.39 and outperforms the traditional Bayesian model (VTDM model) with an RMSE of 6.29. We believe that PK-RNN-V E can provide a pharmacokinetic model for vancomycin and other antimicrobials that require TDM.


Assuntos
Aprendizado Profundo , Vancomicina , Teorema de Bayes , Monitoramento de Medicamentos/métodos , Registros Eletrônicos de Saúde , Humanos , Vancomicina/uso terapêutico
2.
Neurosurg Focus ; 48(5): E4, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32357322

RESUMO

OBJECTIVE: Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular condition, not only due to the effect of initial hemorrhage, but also due to the complication of delayed cerebral ischemia (DCI). While hypertension facilitated by vasopressors is often initiated to prevent DCI, which vasopressor is most effective in improving outcomes is not known. The objective of this study was to determine associations between initial vasopressor choice and mortality in patients with nontraumatic SAH. METHODS: The authors conducted a retrospective cohort study using a large, national electronic medical record data set from 2000-2014 to identify patients with a new diagnosis of nontraumatic SAH (based on ICD-9 codes) who were treated with the vasopressors dopamine, phenylephrine, or norepinephrine. The relationship between the initial choice of vasopressor therapy and the primary outcome, which was defined as in-hospital death or discharge to hospice care, was examined. RESULTS: In total, 2634 patients were identified with nontraumatic SAH who were treated with a vasopressor. In this cohort, the average age was 56.5 years, 63.9% were female, and 36.5% of patients developed the primary outcome. The incidence of the primary outcome was higher in those initially treated with either norepinephrine (47.6%) or dopamine (50.6%) than with phenylephrine (24.5%). After adjusting for possible confounders using propensity score methods, the adjusted OR of the primary outcome was higher with dopamine (OR 2.19, 95% CI 1.70-2.81) and norepinephrine (OR 2.24, 95% CI 1.80-2.80) compared with phenylephrine. Sensitivity analyses using different variable selection procedures, causal inference models, and machine-learning methods confirmed the main findings. CONCLUSIONS: In patients with nontraumatic SAH, phenylephrine was significantly associated with reduced mortality in SAH patients compared to dopamine or norepinephrine. Prospective randomized clinical studies are warranted to confirm this finding.


Assuntos
Dopamina/uso terapêutico , Registros Eletrônicos de Saúde , Norepinefrina/uso terapêutico , Fenilefrina/uso terapêutico , Hemorragia Subaracnóidea/tratamento farmacológico , Vasoconstritores/uso terapêutico , Adulto , Idoso , Feminino , Escala de Coma de Glasgow , Mortalidade Hospitalar , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Alta do Paciente/estatística & dados numéricos , Estudos Retrospectivos , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/mortalidade
3.
J Med Internet Res ; 22(7): e16981, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32735224

RESUMO

BACKGROUND: Asthma exacerbation is an acute or subacute episode of progressive worsening of asthma symptoms and can have a significant impact on patients' quality of life. However, efficient methods that can help identify personalized risk factors and make early predictions are lacking. OBJECTIVE: This study aims to use advanced deep learning models to better predict the risk of asthma exacerbations and to explore potential risk factors involved in progressive asthma. METHODS: We proposed a novel time-sensitive, attentive neural network to predict asthma exacerbation using clinical variables from large electronic health records. The clinical variables were collected from the Cerner Health Facts database between 1992 and 2015, including 31,433 adult patients with asthma. Interpretations on both patient and cohort levels were investigated based on the model parameters. RESULTS: The proposed model obtained an area under the curve value of 0.7003 through a five-fold cross-validation, which outperformed the baseline methods. The results also demonstrated that the addition of elapsed time embeddings considerably improved the prediction performance. Further analysis observed diverse distributions of contributing factors across patients as well as some possible cohort-level risk factors, which could be found supporting evidence from peer-reviewed literature such as respiratory diseases and esophageal reflux. CONCLUSIONS: The proposed neural network model performed better than previous methods for the prediction of asthma exacerbation. We believe that personalized risk scores and analyses of contributing factors can help clinicians better assess the individual's level of disease progression and afford the opportunity to adjust treatment, prevent exacerbation, and improve outcomes.


Assuntos
Asma/fisiopatologia , Aprendizado Profundo/normas , Redes Neurais de Computação , Qualidade de Vida/psicologia , Progressão da Doença , Feminino , Humanos , Masculino , Estudos Retrospectivos , Medição de Risco , Fatores de Risco
4.
BMC Med Inform Decis Mak ; 19(Suppl 2): 58, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30961579

RESUMO

BACKGROUND: Learning distributional representation of clinical concepts (e.g., diseases, drugs, and labs) is an important research area of deep learning in the medical domain. However, many existing relevant methods do not consider temporal dependencies along the longitudinal sequence of a patient's records, which may lead to incorrect selection of contexts. METHODS: To address this issue, we extended three popular concept embedding learning methods: word2vec, positive pointwise mutual information (PPMI) and FastText, to consider time-sensitive information. We then trained them on a large electronic health records (EHR) database containing about 50 million patients to generate concept embeddings and evaluated them for both intrinsic evaluations focusing on concept similarity measure and an extrinsic evaluation to assess the use of generated concept embeddings in the task of predicting disease onset. RESULTS: Our experiments show that embeddings learned from information within one visit (time window zero) improve performance on the concept similarity measure and the FastText algorithm usually had better performance than the other two algorithms. For the predictive modeling task, the optimal result was achieved by word2vec embeddings with a 30-day sliding window. CONCLUSIONS: Considering time constraints are important in training clinical concept embeddings. We expect they can benefit a series of downstream applications.


Assuntos
Aprendizado Profundo , Registros Eletrônicos de Saúde , Algoritmos , Bases de Dados Factuais , Humanos , Armazenamento e Recuperação da Informação , Fatores de Tempo
5.
J Biomed Inform ; 84: 11-16, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29908902

RESUMO

Recently, recurrent neural networks (RNNs) have been applied in predicting disease onset risks with Electronic Health Record (EHR) data. While these models demonstrated promising results on relatively small data sets, the generalizability and transferability of those models and its applicability to different patient populations across hospitals have not been evaluated. In this study, we evaluated an RNN model, RETAIN, over Cerner Health Facts® EMR data, for heart failure onset risk prediction. Our data set included over 150,000 heart failure patients and over 1,000,000 controls from nearly 400 hospitals. Convincingly, RETAIN achieved an AUC of 82% in comparison to an AUC of 79% for logistic regression, demonstrating the power of more expressive deep learning models for EHR predictive modeling. The prediction performance fluctuated across different patient groups and varied from hospital to hospital. Also, we trained RETAIN models on individual hospitals and found that the model can be applied to other hospitals with only about 3.6% of reduction of AUC. Our results demonstrated the capability of RNN for predictive modeling with large and heterogeneous EHR data, and pave the road for future improvements.


Assuntos
Aprendizado Profundo , Registros Eletrônicos de Saúde , Insuficiência Cardíaca/diagnóstico , Redes Neurais de Computação , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Área Sob a Curva , Estudos de Casos e Controles , Simulação por Computador , Bases de Dados Factuais , Feminino , Humanos , Modelos Logísticos , Masculino , Informática Médica/métodos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
6.
Nat Commun ; 15(1): 2036, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448409

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) poses significant morbidity and mortality in hospitals. Rapid, accurate risk stratification of MRSA is crucial for optimizing antibiotic therapy. Our study introduced a deep learning model, PyTorch_EHR, which leverages electronic health record (EHR) time-series data, including wide-variety patient specific data, to predict MRSA culture positivity within two weeks. 8,164 MRSA and 22,393 non-MRSA patient events from Memorial Hermann Hospital System, Houston, Texas are used for model development. PyTorch_EHR outperforms logistic regression (LR) and light gradient boost machine (LGBM) models in accuracy (AUROCPyTorch_EHR = 0.911, AUROCLR = 0.857, AUROCLGBM = 0.892). External validation with 393,713 patient events from the Medical Information Mart for Intensive Care (MIMIC)-IV dataset in Boston confirms its superior accuracy (AUROCPyTorch_EHR = 0.859, AUROCLR = 0.816, AUROCLGBM = 0.838). Our model effectively stratifies patients into high-, medium-, and low-risk categories, potentially optimizing antimicrobial therapy and reducing unnecessary MRSA-specific antimicrobials. This highlights the advantage of deep learning models in predicting MRSA positive cultures, surpassing traditional machine learning models and supporting clinicians' judgments.


Assuntos
Aprendizado Profundo , Staphylococcus aureus Resistente à Meticilina , Humanos , Registros Eletrônicos de Saúde , Staphylococcus aureus Resistente à Meticilina/genética , Cuidados Críticos , Hospitais
7.
J Am Heart Assoc ; 13(3): e029900, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38293921

RESUMO

BACKGROUND: The rapid evolution of artificial intelligence (AI) in conjunction with recent updates in dual antiplatelet therapy (DAPT) management guidelines emphasizes the necessity for innovative models to predict ischemic or bleeding events after drug-eluting stent implantation. Leveraging AI for dynamic prediction has the potential to revolutionize risk stratification and provide personalized decision support for DAPT management. METHODS AND RESULTS: We developed and validated a new AI-based pipeline using retrospective data of drug-eluting stent-treated patients, sourced from the Cerner Health Facts data set (n=98 236) and Optum's de-identified Clinformatics Data Mart Database (n=9978). The 36 months following drug-eluting stent implantation were designated as our primary forecasting interval, further segmented into 6 sequential prediction windows. We evaluated 5 distinct AI algorithms for their precision in predicting ischemic and bleeding risks. Model discriminative accuracy was assessed using the area under the receiver operating characteristic curve, among other metrics. The weighted light gradient boosting machine stood out as the preeminent model, thus earning its place as our AI-DAPT model. The AI-DAPT demonstrated peak accuracy in the 30 to 36 months window, charting an area under the receiver operating characteristic curve of 90% [95% CI, 88%-92%] for ischemia and 84% [95% CI, 82%-87%] for bleeding predictions. CONCLUSIONS: Our AI-DAPT excels in formulating iterative, refined dynamic predictions by assimilating ongoing updates from patients' clinical profiles, holding value as a novel smart clinical tool to facilitate optimal DAPT duration management with high accuracy and adaptability.


Assuntos
Doença da Artéria Coronariana , Stents Farmacológicos , Infarto do Miocárdio , Intervenção Coronária Percutânea , Humanos , Inibidores da Agregação Plaquetária/efeitos adversos , Infarto do Miocárdio/etiologia , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/cirurgia , Stents Farmacológicos/efeitos adversos , Inteligência Artificial , Estudos Retrospectivos , Resultado do Tratamento , Fatores de Risco , Quimioterapia Combinada , Hemorragia/induzido quimicamente , Prognóstico , Intervenção Coronária Percutânea/efeitos adversos
8.
JCO Clin Cancer Inform ; 7: e2200141, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37018650

RESUMO

PURPOSE: Early detection of brain metastases (BMs) is critical for prompt treatment and optimal control of the disease. In this study, we seek to predict the risk of developing BM among patients diagnosed with lung cancer on the basis of electronic health record (EHR) data and to understand what factors are important for the model to predict BM development through explainable artificial intelligence approaches accurately. MATERIALS AND METHODS: We trained a recurrent neural network model, REverse Time AttentIoN (RETAIN), to predict the risk of developing BM using structured EHR data. To interpret the model's decision process, we analyzed the attention weights in the RETAIN model and the SHAP values from a feature attribution method, Kernel SHAP, to identify the factors contributing to BM prediction. RESULTS: We developed a high-quality cohort with 4,466 patients with BM from the Cerner Health Fact database, which contains over 70 million patients from more than 600 hospitals. RETAIN uses this data set to achieve the best area under the receiver operating characteristic curve at 0.825, a significant improvement over the baseline model. We also extended a feature attribution method, Kernel SHAP, to structured EHR data for model interpretation. Both RETAIN and Kernel SHAP can identify important features related to BM prediction. CONCLUSION: To the best of our knowledge, this is the first study to predict BM using structured EHR data. We achieved decent prediction performance for BM prediction and identified factors highly relevant to BM development. The sensitivity analysis demonstrated that both RETAIN and Kernel SHAP could discriminate unrelated features and put more weight on the features important to BM. Our study explored the potential of applying explainable artificial intelligence for future clinical applications.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Inteligência Artificial , Registros Eletrônicos de Saúde , Detecção Precoce de Câncer , Neoplasias Encefálicas/secundário
9.
Lancet Digit Health ; 4(6): e415-e425, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35466079

RESUMO

BACKGROUND: Predicting outcomes of patients with COVID-19 at an early stage is crucial for optimised clinical care and resource management, especially during a pandemic. Although multiple machine learning models have been proposed to address this issue, because of their requirements for extensive data preprocessing and feature engineering, they have not been validated or implemented outside of their original study site. Therefore, we aimed to develop accurate and transferrable predictive models of outcomes on hospital admission for patients with COVID-19. METHODS: In this study, we developed recurrent neural network-based models (CovRNN) to predict the outcomes of patients with COVID-19 by use of available electronic health record data on admission to hospital, without the need for specific feature selection or missing data imputation. CovRNN was designed to predict three outcomes: in-hospital mortality, need for mechanical ventilation, and prolonged hospital stay (>7 days). For in-hospital mortality and mechanical ventilation, CovRNN produced time-to-event risk scores (survival prediction; evaluated by the concordance index) and all-time risk scores (binary prediction; area under the receiver operating characteristic curve [AUROC] was the main metric); we only trained a binary classification model for prolonged hospital stay. For binary classification tasks, we compared CovRNN against traditional machine learning algorithms: logistic regression and light gradient boost machine. Our models were trained and validated on the heterogeneous, deidentified data of 247 960 patients with COVID-19 from 87 US health-care systems derived from the Cerner Real-World COVID-19 Q3 Dataset up to September 2020. We held out the data of 4175 patients from two hospitals for external validation. The remaining 243 785 patients from the 85 health systems were grouped into training (n=170 626), validation (n=24 378), and multi-hospital test (n=48 781) sets. Model performance was evaluated in the multi-hospital test set. The transferability of CovRNN was externally validated by use of deidentified data from 36 140 patients derived from the US-based Optum deidentified COVID-19 electronic health record dataset (version 1015; from January, 2007, to Oct 15, 2020). Exact dates of data extraction were masked by the databases to ensure patient data safety. FINDINGS: CovRNN binary models achieved AUROCs of 93·0% (95% CI 92·6-93·4) for the prediction of in-hospital mortality, 92·9% (92·6-93·2) for the prediction of mechanical ventilation, and 86·5% (86·2-86·9) for the prediction of a prolonged hospital stay, outperforming light gradient boost machine and logistic regression algorithms. External validation confirmed AUROCs in similar ranges (91·3-97·0% for in-hospital mortality prediction, 91·5-96·0% for the prediction of mechanical ventilation, and 81·0-88·3% for the prediction of prolonged hospital stay). For survival prediction, CovRNN achieved a concordance index of 86·0% (95% CI 85·1-86·9) for in-hospital mortality and 92·6% (92·2-93·0) for mechanical ventilation. INTERPRETATION: Trained on a large, heterogeneous, real-world dataset, our CovRNN models showed high prediction accuracy and transferability through consistently good performances on multiple external datasets. Our results show the feasibility of a COVID-19 predictive model that delivers high accuracy without the need for complex feature engineering. FUNDING: Cancer Prevention and Research Institute of Texas.


Assuntos
COVID-19 , COVID-19/epidemiologia , COVID-19/terapia , Registros Eletrônicos de Saúde , Hospitais , Humanos , Redes Neurais de Computação , Estudos Retrospectivos
10.
NPJ Digit Med ; 4(1): 86, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34017034

RESUMO

Deep learning (DL)-based predictive models from electronic health records (EHRs) deliver impressive performance in many clinical tasks. Large training cohorts, however, are often required by these models to achieve high accuracy, hindering the adoption of DL-based models in scenarios with limited training data. Recently, bidirectional encoder representations from transformers (BERT) and related models have achieved tremendous successes in the natural language processing domain. The pretraining of BERT on a very large training corpus generates contextualized embeddings that can boost the performance of models trained on smaller datasets. Inspired by BERT, we propose Med-BERT, which adapts the BERT framework originally developed for the text domain to the structured EHR domain. Med-BERT is a contextualized embedding model pretrained on a structured EHR dataset of 28,490,650 patients. Fine-tuning experiments showed that Med-BERT substantially improves the prediction accuracy, boosting the area under the receiver operating characteristics curve (AUC) by 1.21-6.14% in two disease prediction tasks from two clinical databases. In particular, pretrained Med-BERT obtains promising performances on tasks with small fine-tuning training sets and can boost the AUC by more than 20% or obtain an AUC as high as a model trained on a training set ten times larger, compared with deep learning models without Med-BERT. We believe that Med-BERT will benefit disease prediction studies with small local training datasets, reduce data collection expenses, and accelerate the pace of artificial intelligence aided healthcare.

11.
Int J Infect Dis ; 113: 148-154, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34597766

RESUMO

BACKGROUND: Studies have shown conflicting results on the efficacy of tocilizumab (TCZ) for patients with COVID-19, with many confounders of clinical status and limited duration of the observation. Here, we evaluate the real-world long-term efficacy of TCZ in COVID-19 patients. METHODS: We conducted a retrospective study of hospitalized adult patients with COVID-19 using a large US-based multicenter COVID-19 database (Cerner Real-World Data; updated in September, 2020). The TCZ group was defined as patients who received at least one dose of the drug. Matching weight (MW) and a propensity score weighting method were used to balance confounding factors. RESULTS: A total of 20,399 patients were identified. 1,510 and 18,899 were in the TCZ and control groups, respectively. After MW adjustment, no statistically significant differences in all-cause mortality were found for the TCZ vs. control group (Hazard Ratio [HR]:0.76, p=0.06). Survival curves suggested a better trend in short-term observation, driven from a subgroup of patients requiring oxygen masks, BIPAP or CPAP. CONCLUSION: We observed a temporal (early) benefit of TCZ, especially in patients on non-invasive high-flow supplemental oxygen. However, the benefit effects faded with longer observation. The long-term benefits and risks of TCZ should be carefully evaluated with follow-up studies.


Assuntos
Tratamento Farmacológico da COVID-19 , Adulto , Anticorpos Monoclonais Humanizados , Registros Eletrônicos de Saúde , Humanos , Estudos Retrospectivos , SARS-CoV-2 , Estados Unidos/epidemiologia
12.
J Am Med Inform Assoc ; 27(10): 1593-1599, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32930711

RESUMO

OBJECTIVE: Predictive disease modeling using electronic health record data is a growing field. Although clinical data in their raw form can be used directly for predictive modeling, it is a common practice to map data to standard terminologies to facilitate data aggregation and reuse. There is, however, a lack of systematic investigation of how different representations could affect the performance of predictive models, especially in the context of machine learning and deep learning. MATERIALS AND METHODS: We projected the input diagnoses data in the Cerner HealthFacts database to Unified Medical Language System (UMLS) and 5 other terminologies, including CCS, CCSR, ICD-9, ICD-10, and PheWAS, and evaluated the prediction performances of these terminologies on 2 different tasks: the risk prediction of heart failure in diabetes patients and the risk prediction of pancreatic cancer. Two popular models were evaluated: logistic regression and a recurrent neural network. RESULTS: For logistic regression, using UMLS delivered the optimal area under the receiver operating characteristics (AUROC) results in both dengue hemorrhagic fever (81.15%) and pancreatic cancer (80.53%) tasks. For recurrent neural network, UMLS worked best for pancreatic cancer prediction (AUROC 82.24%), second only (AUROC 85.55%) to PheWAS (AUROC 85.87%) for dengue hemorrhagic fever prediction. DISCUSSION/CONCLUSION: In our experiments, terminologies with larger vocabularies and finer-grained representations were associated with better prediction performances. In particular, UMLS is consistently 1 of the best-performing ones. We believe that our work may help to inform better designs of predictive models, although further investigation is warranted.


Assuntos
Registros Eletrônicos de Saúde , Unified Medical Language System , Vocabulário Controlado , Idoso , Bases de Dados Factuais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA