Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Immunol Invest ; 53(2): 115-159, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38054436

RESUMO

Resistin, a cytokine hormone predominantly secreted by adipose tissue, is elevated in various metabolic disorders such as obesity, type 2 diabetes, and cardiovascular disease. In addition to its involvement in metabolic regulation, resistin has been implicated in the pathogenesis of psoriasis, a chronic inflammatory skin disorder. Numerous studies have reported increased resistin levels in psoriatic skin lesions, suggesting a possible association between resistin and psoriasis. Recent studies have suggested the potential involvement of resistin in the development and progression of certain cancers. Resistin is overexpressed in breast, colorectal, and gastric cancers. This suggests that it may play a role in the development of these cancers, possibly by inducing inflammation and cell growth. The link between resistin and cancer raises the possibility of shared underlying mechanisms driving the pathogenesis of psoriasis. Chronic inflammation, one such mechanism, is a hallmark of psoriasis and cancer. Further research is needed to fully understand the relationship between resistin and psoriasis. Identifying potential therapeutic targets is crucial for effective management of psoriasis. By doing so, we may be able to develop more effective treatment options for individuals living with psoriasis and ultimately improve their quality of life. Ultimately, a more comprehensive understanding of the mechanisms underlying the impact of resistin on psoriasis is essential for advancing our knowledge and finding new ways to treat and manage this challenging condition.


Assuntos
Psoríase , Resistina , Humanos , Diabetes Mellitus Tipo 2/complicações , Inflamação , Neoplasias , Qualidade de Vida , Resistina/fisiologia
2.
Bioorg Chem ; 151: 107689, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39111119

RESUMO

Immune-mediated inflammatory diseases (IMIDs) comprise a broad spectrum of conditions characterized by systemic inflammation affecting various organs and tissues, for which there is no known cure. The isoform-specific inhibition of phosphodiesterase-4B (PDE4B) over PDE4D constitutes an effective therapeutic strategy for the treatment of IMIDs that minimizes the adverse effects associated with non-selective PDE4 inhibitors. Thus, we report a new class of isoquinolone derivatives as next-generation PDE4 inhibitors for effective management of rheumatoid arthritis (RA) and psoriasis. Among the series, 8 compounds i.e. 1e, 1l, 1m, 1n, 1o, 2m, 2o and 3o showed promising PDE4B inhibition (>80 %) in vitro with IC50 ∼ 1.4-6.2 µM. The compound 1l was identified as an initial hit and was pursued for further studies. According to structure-activity relationship (SAR), an allyl group at C-4 position improved PDE4B inhibition. The correlation between in vitro activity data and binding affinities obtained via molecular docking suggested that the high-affinity binding to PDE4B is a prerequisite for the effective inhibition of PDE4B. Notably, the hit 1l showed selectivity towards PDE4B over PDE4D in vitro. Furthermore, 1l treatment (30 mg/kg) in the adjuvant-induced arthritis (AIA) rat model induced by complete Freund's adjuvant (CFA) demonstrated anti-arthritic potential via ameliorating paw swelling and body weight, narrowing joint space, reducing excessive immune cells infiltration and pannus formation in addition to reducing mRNA expression of pro-inflammatory cytokines such as TNF-α and IL-6 in synovial tissues of experimental rats. Additionally, 1l reduced the hyper-proliferative state and colony forming potential of IMQ-induced psoriatic keratinocytes. The treatment of these cells with 1l markedly reduced the protein levels of Ki67 and mRNA levels of pro-inflammatory cytokines e.g. IL-17A and TNF-α suggesting its potent anti-psoriatic potential. Furthermore, 1l did not show any significant adverse effects when evaluated in a systematic toxicity (e.g. teratogenicity, hepatotoxicity and cardiotoxicity) studies in zebrafish at the tested concentrations (1-100 µM) and the NOAEL (no-observed-adverse-effect level) was found to be 100 µM. Thus, with promising anti-inflammatory effects both in vitro and in vivo along with PDE4B selectivity with an acceptable safety margin, 1l emerged as a new and promising inhibitor for further studies.


Assuntos
Artrite Reumatoide , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Inibidores da Fosfodiesterase 4 , Psoríase , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/química , Inibidores da Fosfodiesterase 4/síntese química , Inibidores da Fosfodiesterase 4/uso terapêutico , Psoríase/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Animais , Relação Estrutura-Atividade , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Humanos , Ratos , Estrutura Molecular , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Peixe-Zebra , Artrite Experimental/tratamento farmacológico , Artrite Experimental/induzido quimicamente , Artrite Experimental/patologia , Masculino
3.
Cytokine ; 163: 156136, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36716676

RESUMO

Dendritic cells (DCs) are the critical players in the puzzle of rheumatoid arthritis (RA) disease pathogenesis. Blockade of DC activation has been shown to curtail Th17 cell differentiation and its aberrant function in RA. Recent studies have pointed to the role of the PI3K/AKT signaling axis in the maturation and activation of DCs. However, it is yet to be established how PI3K/AKT inhibition would lead to the abolishment of DC activation and Th17 cell plasticity in RA. Herein, our study decoded whether and how majoon chobchini, an unani compound, abated dendritic cell maturation and regulated the Th17/Treg paradigm in RA. Given our results, majoon chobchini conspicuously restrained MHC II, CD86 expression and, subsequently elevated PDL-1 levels in DCs in-vivo. Of note, inhibition of DC maturation by majoon chobchini, in turn, favoured suppression of the Th17 cell population while driving Treg cell development in adjuvant induced arthritic (AA) rats. Concurrently, majoon chobchini decreased the catabolic effects of IL-17 (Th17 associated cytokine) via a reciprocal increase in IL-10 (Treg associated cytokine) levels in AA rats. Mechanistically, majoon chobchini sustained FoxO1 nuclear localization signaled through dampened PI3K/AKT phosphorylation in-vitro. In concert, PDL-1 expression was heightened in majoon chobchini treated activated DCs that provides a framework for ablation of the DC-Th17 cell pathogenic axis in RA. Notwithstanding, the PI3K inhibitor LY294002 exhibited similar inhibitory effects. In essence, majoon chobchini enhanced PDL-1 expression that abolished DC maturation via regulation of the PI3K/AKT/FoxO1 axis, thereby hindering Th17 differentiation in an animal model of RA. This further warrants a clinical investigation that could validate majoon chobchini as a prospective therapeutic drug in the treatment of RA.


Assuntos
Artrite Reumatoide , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Artrite Reumatoide/metabolismo , Citocinas/metabolismo , Linfócitos T Reguladores/metabolismo , Modelos Animais de Doenças , Células Th17/metabolismo , Células Dendríticas/metabolismo
4.
Bioorg Chem ; 138: 106606, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37210826

RESUMO

The 12R-lipoxygenase (12R-LOX), a (non-heme) iron-containing metalloenzyme belonging to the lipoxygenase (LOX) family catalyzes the conversion of arachidonic acid (AA) to its key metabolites. Studies suggested that 12R-LOX plays a critical role in immune modulation for the maintenance of skin homeostasis and therefore can be considered as a potential drug target for psoriasis and other skin related inflammatory diseases. However, unlike 12-LOX (or 12S-LOX) the enzyme 12R-LOX did not receive much attention till date. In our effort, the 2-aryl quinoline derivatives were designed, synthesized and evaluated for the identification of potential inhibitors of 12R-hLOX. The merit of selection of 2-aryl quinolines was assessed by in silico docking studies of a representative compound (4a) using the homology model of 12R-LOX. Indeed, in addition to participating in H-bonding with THR628 and LEU635 the molecule formed a hydrophobic interaction with VAL631. The desired 2-aryl quinolines were synthesized either via the Claisen-Schmidt condensation followed by one-pot reduction-cyclization or via the AlCl3 induced heteroarylation or via the O-alkylation approach in good to high (82-95%) yield. When screened against human 12R-LOX (12R-hLOX) in vitro four compounds (e.g. 4a, 4d, 4e and 7b) showed encouraging (>45%) inhibition at 100 µM among which 7b and 4a emerged as the initial hits. Both the compounds showed selectivity towards 12R-hLOX over 12S-hLOX, 15-hLOX and 15-hLOXB and concentration dependent inhibition of 12R-hLOX with IC50 = 12.48 ± 2.06 and 28.25 ± 1.63 µM, respectively. The selectivity of 4a and 7b towards 12R-LOX over 12S-LOX was rationalized with the help of molecular dynamics simulations. The SAR (Structure-Activity Relationship) within the present series of compounds suggested the need of a o-hydroxyl group on the C-2 phenyl ring for the activity. The compound 4a and 7b (at 10 and 20 µM) reduced the hyper-proliferative state and colony forming potential of IMQ-induced psoriatic keratinocytes in a concentration dependent manner. Further, both compounds decreased the protein levels of Ki67 and the mRNA expression of IL-17A in the IMQ-induced psoriatic-like keratinocytes. Notably, 4a but not 7b inhibited the production of IL-6 and TNF-α in the keratinocyte cells. In the preliminary toxicity studies (i.e. teratogenicity, hepatotoxicity and heart rate assays) in zebrafish both the compounds showed low safety (<30 µM) margin. Overall, being the first identified inhibitors of 12R-LOX both 4a and 7b deserve further investigations.


Assuntos
Quinolinas , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/metabolismo , Araquidonato 12-Lipoxigenase/metabolismo , Pele/metabolismo , Quinolinas/farmacologia , Relação Estrutura-Atividade , Inibidores de Lipoxigenase/farmacologia , Simulação de Acoplamento Molecular
5.
Pharmacol Res ; 178: 106176, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35283302

RESUMO

Rheumatoid arthritis (RA) is a chronic immune-mediated disorder, mainly characterized by synovial inflammation and joint damage. If insufficiently treated, RA can lead to irreversible joint destruction and decreased life expectancy. While better understanding of the pathologies and the development of new antirheumatic drugs have improved the outcome of individuals with RA, many patients still cannot achieve remission and experience progressive disability. Fibroblast-like synoviocytes (FLS) have gained attention due to its pivotal role in RA pathogenesis and thus targeting FLS has been suggested as an attractive therapeutic strategy. To identify candidate molecules with strong inhibitory activity against FLS inflammation, we tested the effect of 315 natural extracts against IL-17-mediated IL-6 production. Zingiber officinale was found as the top hit and further analysis on the active compound responsible led to the discovery of 8-shogaol as a potent molecule against synovitis. 8-Shogaol displayed significant inhibitory effects against TNF-α-, IL-1ß-, and IL-17-mediated inflammation and migration in RA patient-derived FLS (RA-FLS) and 3D synovial culture system. 8-Shogaol selectively and directly inhibited TAK1 activity and subsequently suppressed IKK, Akt, and MAPK signaling pathways. Moreover, treatment with 8-shogaol reduced paw thickness and improved walking performance in the adjuvant-induced arthritic (AIA) rat model. 8-Shogaol also reversed pathologies of joint structure in AIA rats and decreased inflammatory biomarkers in the joints. Collectively, we report a novel natural compound that inhibits RA through reversing pathologies of the inflamed synovium via targeting TAK1.


Assuntos
Artrite Reumatoide , Guaiacol , MAP Quinase Quinase Quinases , Sinoviócitos , Animais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Guaiacol/análogos & derivados , Guaiacol/farmacologia , Humanos , Interleucina-17/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Terapia de Alvo Molecular , Ratos , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo , Sinoviócitos/patologia
6.
Immunol Invest ; 51(6): 1582-1597, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34704880

RESUMO

Fibroblast-like synoviocytes (FLS) are the critical effector cells primarily involved in rheumatoid arthritis (RA) disease pathogenesis. Interleukin (IL)-6, a proinflammatory cytokine most abundantly expressed in the rheumatoid synovium, promotes Janus kinase (JAK)/signal transducer and transcriptional activator (STAT) signaling cascade activation in RA-FLS, thus leading to its aggressive phenotype, invasiveness, and joint destruction. Momelotinib (CYT387) is a selective small-molecule inhibitor of JAK1/2 and is clinically approved to treat myelofibrosis. However, the therapeutic efficacy of CYT387 in FLS mediated RA pathogenesis is less known. In the present study, we investigated the modulatory effect of CYT387 on IL6/JAK/STAT signaling cascade in FLS induced RA pathogenesis. CYT387 treatment inhibited IL-6 induced high proliferative and migratory potential of FLS cells isolated from adjuvant-induced arthritic (AA) rats. CYT387 reduced the expression of PRMT5, survivin, and HIF-1α mediated by IL-6/sIL-6R in AA-FLS in a dose-dependent manner. The IL-6/sIL-6R induced expression of angiogenic factors such as VEGF and PIGF in AA-FLS cells was found downregulated by CYT387 treatment. Importantly, CYT387 significantly reduced IL-6/sIL-6R dependent activation of JAK1 and STAT3 and increased SOCS3 expression in AA-FLS cells. Next, the S3I-201 mediated blockade of STAT3 activation supported the inhibitory effect of CYT387 on IL-6/JAK1/STAT3 signaling cascade in AA-FLS. Overall, this study proves that CYT387 inhibits proliferation, migration, and pathogenic disease potential of FLS isolated from adjuvant-induced arthritic (AA) rats via targeting IL-6/JAK1/STAT3 signaling cascade.


Assuntos
Artrite Reumatoide , Sinoviócitos , Animais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Benzamidas , Proliferação de Células , Células Cultivadas , Feminino , Fibroblastos , Interleucina-6/metabolismo , Janus Quinase 1/metabolismo , Fator de Crescimento Placentário/metabolismo , Fator de Crescimento Placentário/farmacologia , Fator de Crescimento Placentário/uso terapêutico , Pirimidinas , Ratos , Fator de Transcrição STAT3/metabolismo , Membrana Sinovial/patologia
7.
Bioorg Chem ; 121: 105667, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182886

RESUMO

In search of potent and new anti-inflammatory agents, we explored a new class of isocoumarin derivatives possessing the 3-oxoalkyl moiety at C-4 position. These compounds were synthesized via the FeCl3 catalyzed construction of isocoumarin ring. The methodology involved coupling of 2-alkynyl benzamides with alkyl vinyl ketone and proceeded via a regioselective cyclization to give the desired compound as a result of formation of CO and CC bonds. A large number of isocoumarins were synthesized and assessed against PDE4B in vitro. While isocoumarins containing an aminosulfonyl moiety attached to the C-3 aryl ring showed encouraging inhibition of PDE4B, some of the derivatives devoid of aminosulfonyl moiety also showed considerable inhibition. According to the SAR analysis the C6H4NHSO2R2-m moiety at C-3 position of the isocoumarin ring was favorable when the R2 was chosen as an aryl or 2-thienyl group whereas the presence of F or OMe substituent at C-7 of the isocoumarin ring was found to be beneficial. The compound 5f with IC50 values 0.125 ± 0.032 and 0.43 ± 0.013 µM against PDE4B and 4D, respectively was identified as an initial hit. It showed in silico interaction with the PHE678 residue in the CR3 region of PDE4B and relatively less number of interactions with PDE4D. Besides showing the PDE4 selectivity over other PDEs and TNF-α inhibition in vitro the compound 5f at an intraperitoneal dose of 30 mg/kg demonstrated the protective effects against the development of arthritis and potent immunomodulatory activity in adjuvant induced arthritic (AIA) rats. Furthermore, no significant adverse effects were observed for this compound when evaluated in a systematic toxicity (e.g. teratogenicity, hepatotoxicity and cardiotoxicity) studies in zebrafish at various concentrations. Collectively, being a new, potent, moderately selective and safe inhibitor of PDE4B the isocoumarin 5f can be progressed into further pharmacological studies.


Assuntos
Compostos Férricos , Isocumarinas , Animais , Catálise , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Isocumarinas/química , Ratos , Relação Estrutura-Atividade , Peixe-Zebra/metabolismo
8.
Cytokine ; 142: 155502, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33810944

RESUMO

Interleukin (IL)-17A signaling pathway plays a critical role in the initiation and progression of rheumatoid arthritis (RA) and represents a viable target for RA therapy. Cyanidin, a flavonoid compound, is a novel inhibitor of IL-17A/IL-17RA (receptor subunit A) interaction in several inflammatory diseases. However, the therapeutic efficacy of cyanidin on IL-17A cytokine signaling induced monocyte migration and fibroblast-like synoviocytes (FLS) released RANKL mediated osteoclastogenesis in RA has not yet been deciphered. In the present study, cyanidin impeded IL-17A induced migration of monocytes isolated from adjuvant-induced arthritic (AA) rats. At the molecular level, cyanidin blocked the activation of p38MAPK signaling in response to IL-17A. Importantly, cyanidin downregulated IL-17A induced expression of HSP27, CXCR4, and CCR7 in AA monocytes via modulating IL-17/p38 MAPK signaling axis. Alternatively, cyanidin significantly suppressed the formation of matured osteoclasts and bone resorption in a coculture system consisting of IL-17 treated AA-FLS and rat bone marrow-derived monocytes/macrophages. Further, cyanidin significantly inhibited the expression of RANKL and increased the expression of OPG in AA-FLS via blunted activation of IL-17A/STAT-3 signaling cascade. Interestingly, cyanidin impaired IL-17A induced overexpression of IL-17RA. Taken together, our study proposes a novel therapeutic function of cyanidin towards targeted inhibition of IL-17A/IL-17RA signaling mediated disease severity and bone erosion in RA.


Assuntos
Antocianinas/farmacologia , Artrite Reumatoide/patologia , Diferenciação Celular , Interleucina-17/metabolismo , Monócitos/patologia , Osteoclastos/patologia , Transdução de Sinais , Animais , Antocianinas/química , Artrite Experimental/patologia , Artrite Reumatoide/complicações , Reabsorção Óssea/complicações , Reabsorção Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Feminino , Proteínas de Choque Térmico HSP27/metabolismo , Masculino , Camundongos , Modelos Biológicos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteoprotegerina/metabolismo , Fosforilação/efeitos dos fármacos , Ligante RANK/metabolismo , Ratos Wistar , Receptores CCR7/metabolismo , Receptores CXCR4/metabolismo , Receptores de Interleucina-17/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
J Cell Physiol ; 235(12): 9497-9509, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32372426

RESUMO

Bone erosion is the major cause of deformities in autoimmune disease conditions such as osteoporosis and rheumatoid arthritis. Aberrant receptor activator of nuclear factor kappa B ligand (RANKL) secretion in bone disorders have been implicated to promote uncontrolled osteoclast differentiation through the regulation of nuclear factor of activated T cells 1 (NFATc1) transcription factor. This phenomenon is governed by several molecular factors including microRNAs, which are under-expressed during disease progression. This report focuses on elucidating the molecular mechanism of miR-506-3p towards the RANKL/NFATc1 pathway. miR-506-3p showed high binding affinity towards NFATc1 (ΔG = -22.4 kcal/mol). Bone marrow-derived macrophages (BMMs) isolated from rats stimulated with RANKL (100 ng/ml) showed active expression of NFATc1 which differentiated into mature osteoclasts. Moreover, NFATc1 activation resulted in downstream secretion of various bone resorptive enzymes (cathepsin K, carbonic anhydrase II, tartarate acid phosphatase, and matrix metalloproteinase 9) which lead to active bone resorption. However, transfection of miR-506-3p resulted in selective repression of NFATc1 inside the cells. This further resulted in the diminished release of bone resorptive enzymes that were essential for the degradation of the bone. Overall, we predict that miR-506-3p can be used as a molecular intervention for RANKL/NFATc1 mediated osteoclastogenesis.


Assuntos
MicroRNAs/genética , Osteogênese/genética , Ligante RANK/genética , Fatores de Transcrição/genética , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Macrófagos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ligante RANK/farmacologia , Ratos , Transdução de Sinais/genética
10.
Toxicol Appl Pharmacol ; 391: 114917, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32044269

RESUMO

The hyperplastic phenotype of fibroblast-like synoviocytes (FLSs) plays an important role for synovitis, chronic inflammation and joint destruction in rheumatoid arthritis (RA). Interleukin 17A (IL-17A), a signature pro-inflammatory cytokine effectively influences the hyperplastic transformation of FLS cells and synovial pannus growth. IL-17A cytokine signalling participates in RA pathology by regulating an array of pro-inflammatory mediators and osteoclastogenesis. Cyanidin, a key flavonoid inhibits IL-17A/IL-17 receptor A (IL-17RA) interaction and alleviates progression and disease severity of psoriasis and asthma. However, the therapeutic efficacy of cyanidin on IL-17A cytokine signalling in RA remains unknown. In the present study, cyanidin inhibited IL-17A induced migratory and proliferative capacity of FLS cells derived from adjuvant-induced arthritis (AA) rats. Cyanidin treatment reduced IL-17A mediated reprogramming of AA-FLS cells to overexpress IL-17RA. In addition, significantly decreased expression of IL-17A dependent cyr61, IL-23, GM-CSF, and TLR3 were observed in AA-FLS cells in response to cyanidin. At the molecular level, cyanidin modulated IL-17/IL-17RA dependent JAK/STAT-3 signalling in AA-FLS cells. Importantly, cyanidin activated PIAS3 protein to suppress STAT-3 specific transcriptional activation in AA-FLS cells. Cyanidin treatment to AA rats attenuated clinical symptoms, synovial pannus growth, immune cell infiltration, and bone erosion. Cyanidin reduced serum level of IL-23 and GM-CSF and expression of Cyr 61 and TLR3 in the synovial tissue of AA rats. Notably, the level of p-STAT-3 protein was significantly decreased in the synovial tissue of AA rats treated with cyanidin. This study provides the first evidence that cyanidin can be used as IL-17/17RA signalling targeting therapeutic drug for the treatment of RA and this need to be investigated in RA patients.


Assuntos
Antocianinas/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Fibroblastos/efeitos dos fármacos , Interleucina-17/metabolismo , Transdução de Sinais/efeitos dos fármacos , Líquido Sinovial/efeitos dos fármacos , Sinoviócitos/efeitos dos fármacos , Animais , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/patologia , Movimento Celular/efeitos dos fármacos , Progressão da Doença , Fibroblastos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Janus Quinases/biossíntese , Janus Quinases/genética , Masculino , Ratos , Ratos Wistar , Fator de Transcrição STAT3/biossíntese , Fator de Transcrição STAT3/genética , Membrana Sinovial/patologia , Sinoviócitos/patologia
11.
J Cell Biochem ; 120(2): 1878-1893, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30160792

RESUMO

Interleukin 17 (IL-17), a proinflammatory cytokine produced by T helper (Th) 17 cells, potentially controls fibroblast-like synoviocytes (FLS)-mediated disease activity of rheumatoid arthritis (RA) via IL-17/ IL-17 receptor type A (IL-17RA)/signal transducer and activator of transcription 3 (STAT-3) signaling cascade. This has suggested that targeting IL-17 signaling could serve as an important strategy to treat FLS-mediated RA progression. Ferulic acid (FA), a key polyphenol, attenuates the development of gouty arthritis and cancer through its anti-inflammatory effects, but its therapeutic efficiency on IL-17 signaling in FLS-mediated RA pathogenesis remains unknown. In the current study, FA markedly inhibited the IL-17-mediated expression of its specific transmembrane receptor IL-17RA in FLS isolated from adjuvant-induced arthritis (AA) rats. Importantly, FA dramatically suppressed the IL-17-mediated expression of toll-like receptor 3 (TLR-3), cysteine-rich angiogenic inducer 61 (Cyr61), IL-23, granulocyte-macrophage colony stimulating factor (GM-CSF) in AA-FLS via the inhibition of IL-17/IL-17RA/STAT-3 signaling cascade. In addition, FA significantly decreased the formation of osteoclast cells and bone resorption potential in a coculture system consisting of IL-17 treated AA-FLS and rat bone marrow derived monocytes/macrophages. Furthermore, FA remarkably inhibited the IL-17-mediated expression of receptor activator of nuclear factor κ-Β ligand (RANKL) and increased the expression of osteoprotegerin (OPG) in AA-FLS via the regulation of IL-17/IL-17RA/STAT-3 signaling cascade. The therapeutic efficiency of FA on IL-17 signaling was further confirmed by knockdown of IL-17RA using small interfering RNA or blocking of STAT-3 activation with S3I-201. The molecular docking analysis revealed that FA manifests significant ligand efficiency toward IL-17RA, STAT-3, IL-23, and RANKL proteins. This study provides new evidence that FA can be used as a potential therapeutic agent for inhibiting IL-17-mediated disease severity and bone erosion in RA.

12.
Apoptosis ; 24(7-8): 644-661, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31111379

RESUMO

In our previous study, we explored the therapeutic effect of berberine (BBR) against IL-21/IL-21R mediated inflammatory proliferation of adjuvant-induced arthritic fibroblast-like synoviocytes (AA-FLS) through the PI3K/Akt pathway. The current study was designed to explore the therapeutic potential of BBR (15-45 µM) against IL-21/IL-21R mediated autophagy in AA-FLS mediated through PI3K/Akt signaling and Th17/Treg imbalance. Upon IL-21 stimulation, AA-FLS expressed elevated levels of autophagy-related 5 (Atg5), Beclin-1 and LC3-phosphatidylethanolamine conjugate 3-II (LC3-II) through the utilization of p62 and inhibition of C/EBP homologous protein (CHOP). BBR (15-45 µM) inhibited autophagy in AA-FLS cells mediated through PI3K/Akt signaling via suppressing autophagic elements, p62 sequestration and induction of CHOP in a dose-dependent manner. Moreover, IL-21 promoted the uncontrolled proliferation of AA-FLS through induction of B cell lymphoma-2 (Bcl-2) and diminished expression of Bcl-2 associated X protein (BAX) via PI3K/Akt signaling. BBR inhibited the proliferation of AA-FLS via promoting apoptosis through increased expression of BAX and diminished Bcl-2 transcription factor levels. Furthermore, T cells stimulated with IL-21 induced CD4+ CD196+ Th17 cells proliferation through RORγt activation mediated in a PI3K/Akt dependent manner. BBR inhibited the proliferation of Th17 cells through downregulation of RORγt in a concentration-dependent manner. BBR also promoted the differentiation of CD4+ CD25+ Treg cells through induction of forkhead box P3 (Foxp3) activation via aryl hydrocarbon receptor (AhR) and upregulation of cytochrome P450 family 1, subfamily A, polypeptide 1 (CYP1A1). Collectively, we conclude that BBR might attenuate AA-FLS proliferation through inhibition of IL-21/IL-21R dependent autophagy and regulates the Th17/Treg imbalance in RA.


Assuntos
Antirreumáticos/farmacologia , Artrite Reumatoide/patologia , Autofagia/efeitos dos fármacos , Berberina/farmacologia , Sinoviócitos/efeitos dos fármacos , Linfócitos T Reguladores/patologia , Células Th17/patologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/imunologia , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Inativação Gênica , Interleucinas/metabolismo , Interleucinas/farmacologia , Ratos , Ratos Wistar , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Interleucina-21/metabolismo , Baço/efeitos dos fármacos , Baço/imunologia , Sinoviócitos/patologia
13.
J Cell Physiol ; 233(5): 3918-3928, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28833093

RESUMO

Rheumatoid arthritis (RA) is a systemic autoimmune inflammatory disorder designated with hyperplastic synovium, bone destruction and cartilage degradation. Current therapies involve targeting major cytokines and inflammatory mediators involved in RA to alleviate the pain and provide a temporary relief. Interleukin 21 (IL-21), a recently identified cytokine is known to possess a versatile role in modulating the cells of the RA synovium. Over the past decade, the pleiotropic role of IL-21 in RA pathogenesis has been implicated in several aspects. T helper 17 (Th17) and follicular T helper cells (Tfh), being the key immunomodulators of the RA synovium secrete high amounts of IL-21 during disease progression. Several studies have provided experimental evidences elucidating the multifaceted role of IL-21 in RA disease progression. IL-21 has the potential to activate T cells, B cells, monocytes/macrophages and synovial fibroblasts in RA pathogenesis through activation of JAK-STAT, MAPK and PI3K/Akt signaling pathways. Till date, therapies targeting Th17 cells and its inflammatory cytokines have been under investigation and are subjected to various clinical trials. This review showcases the role of IL-21 in RA pathogenesis and recent reports implicating its function in various immune cells, major signaling pathways, and in promoting osteoclastogenesis.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Fibroblastos/metabolismo , Interleucinas/metabolismo , Animais , Cartilagem/metabolismo , Citocinas/metabolismo , Humanos , Interleucinas/imunologia , Fosfatidilinositol 3-Quinases/metabolismo
14.
Cell Immunol ; 332: 39-50, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30029761

RESUMO

Interleukin 17 (IL-17) and hypoxia have been implicated to play a key role in rheumatoid arthritis (RA). In this study, the combined treatment of IL-17 and cobalt chloride (CoCl2), a hypoxia mimetic significantly increased the osteoclast formation and the expression of TRAP and MMP-9 in RAW 264.7 macrophage cells in the presence of RANKL and M-CSF. The unified effect of IL-17 and CoCl2 markedly increased osteoclast mediated bone erosion through the activation of RANKL/NF-κB/NFATc1 signaling pathway. The treatment of IL-17 in combination with CoCl2 further potentiated the protein and mRNA expression of HIF-1α and MMP-9 in rat synovial macrophages. Conversely, the blockage of HIF-1α expression with BAY87-2243 abrogated the IL-17 and CoCl2 mediated expression of HIF-1α and MMP-9. Further, the knockdown of IL-17RA using siRNA reversed the IL-17 and CoCl2 induced expression of HIF-1α in synovial macrophages. In conclusion, IL-17 synergizes with CoCl2 induced hypoxic condition to augment osteoclast mediated bone erosion and synovial macrophages mediated RA pathogenesis.


Assuntos
Osso e Ossos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Interleucina-17/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Osteoclastos/metabolismo , Animais , Artrite Reumatoide/metabolismo , Células Cultivadas , Cobalto/metabolismo , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Ligante RANK/metabolismo , Células RAW 264.7 , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Interleucina-17/metabolismo , Transdução de Sinais/fisiologia , Membrana Sinovial/metabolismo , Fosfatase Ácida Resistente a Tartarato/metabolismo
15.
Cytokine ; 106: 54-66, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29549724

RESUMO

The current study investigated the therapeutic effect of berberine (BBR), an alkaloid derivative against IL-21/IL-21R mediated phosphotidyl inositol 3 kinase/protein kinase B (PI3K/Akt) signaling in adjuvant induced arthritic fibroblast-like synoviocytes (AA-FLS) isolated from rats and IL-21 mediated osteoclastogenesis in bone-marrow derived monocytes (BMMs). BBR (15-45 µM) treatment attenuated the gene and protein levels of IL-21R complex. BBR suppressed the levels of IL-21 (20 ng/ml) mediated production of inflammatory cytokines such as: tumor necrosis factor alpha (TNFα), interleukin 1 beta (IL-1ß), interleukin 6 (IL-6) and interleukin 23 (IL-23) in AA-FLS cells. Subsequently, BBR ameliorated the gene and protein expression levels of mechanistic target of rapamycin (mTOR), IL-23 and nuclear factor kappa B (NFκB) p65 through the inhibition of PI3K and upregulation of phosphatase and tensin homolog (PTEN) at the protein level. Furthermore, BBR also inhibited the phosphorylation of Akt and NFκB p65 in a dose dependant manner. LY294002 (20 µM) treatment suppressed the PI3K/Akt signaling and its downstream elements in AA-FLS cells. BBR also modulated IL-21 mediated osteoclastogenesis through the suppression of PI3K dependant nuclear factor of activated T-cells 1 (Nfatc1) induction. Moreover, BBR controlled the osteoclast differentiation via inhibition of various bone resorptive enzymes including: cathepsin K, matrix metalloproteinase 9 (MMP9) and tartarate acid phosphatase (TRAP). LY294002 also inhibited osteoclast formation via suppression of PI3K mediated Nfatc1 induction and other downstream elements. Overall, our findings suggest that BBR is a potential candidate for therapeutic targeting of IL-21/IL-21R mediated RA pathogenesis.


Assuntos
Berberina/farmacologia , Fibroblastos/patologia , Inflamação/patologia , Interleucinas/metabolismo , Osteogênese/efeitos dos fármacos , Receptores de Interleucina-21/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinoviócitos/patologia , Animais , Artrite Experimental/genética , Artrite Experimental/patologia , Berberina/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Modelos Biológicos , Fatores de Transcrição NFATC/metabolismo , Osteogênese/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Receptores de Interleucina-21/genética , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo
16.
Toxicol Appl Pharmacol ; 359: 34-46, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30240693

RESUMO

The current study was designed to explore the underlying therapeutic effect of berberine (BBR), an alkaloid compound against LPS (1 µg/ml)/TNFα (10 ng/ml) mediated apoptosis signal-regulating kinase 1 (ASK1) signaling in RAW 264.7 macrophages and adjuvant-induced arthritic synovial macrophages (AA-SM) with relation to miR-23a levels. LPS and TNFα stimulation abrogated the expression of miR-23a resulting in TLR4/TRAF2 mediated ASK1 activation and downstream phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK). BBR (25-75 µM) treatment ameliorated the gene expression levels of TLR4, TRAF2, TNFα, IL-6, and IL-23 through the upregulation of miR-23a. Subsequently, BBR suppressed the levels of TLR4/TRAF2 mediated phosphorylation of ASK1/p38 and attenuated the expression of various pro-inflammatory cytokines (TNFα, IL-6 & IL-23) in RAW 264.7 macrophages and AA-SM cells. BBR was able to counteract these factors through activation of miR-23a levels in LPS/TNFα stimulated RAW 264.7 macrophages and AA-SM cells. NQDI1 (30 µM) treatment inhibited ASK1 activation resulting in basal levels of miR-23a, owing to the conclusion that ASK1 activation downregulates miR-23a levels inside the cells. Overall, our current findings predict that BBR is a potential candidate for therapeutic targeting of TLR4/TRAF2 mediated ASK1 activation in inflammatory and in RA pathogenesis possibly through post-transcriptional gene silencing via upregulation of miR-23a.


Assuntos
Berberina/farmacologia , MAP Quinase Quinase Quinase 5/efeitos dos fármacos , MicroRNAs/biossíntese , Fator 2 Associado a Receptor de TNF/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos , Animais , Aporfinas/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Feminino , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , MicroRNAs/efeitos dos fármacos , Quinolinas/farmacologia , Células RAW 264.7 , Interferência de RNA/efeitos dos fármacos , Ratos , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Pharmacol Res ; 134: 31-39, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29859810

RESUMO

Rheumatoid arthritis (RA) is a systemic and chronic autoimmune inflammatory disorder affecting multiple joints. Various cytokines, chemokines and growth factors synergistically modulate the joint physiology leading to bone erosion and cartilage degradation. Other than these conventional mediators that are well established in the past, the newly identified plasminogen activator (PA) family of proteins have been witnessed to possess a multifactorial approach in mediating RA pathogenesis. One such family of proteins comprises of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR)/soluble-type plasminogen activator receptor (suPAR). PA family of proteins are classified into two types namely: uPA and tissue type plasminogen activator (tPA). Both these subtypes have been implicated to play a key role in RA disease progression. However during RA pathogenesis, uPA secreted by neutrophils, chondrocytes, and monocytes are designated to interact with uPAR expressed on macrophages, fibroblast-like synoviocytes (FLS), chondrocytes and endothelial cells. Interaction of uPA/uPAR promotes the disease progression of RA through secretion of several cytokines, chemokines, growth factors and matrix metalloproteinases (MMPs). Moreover, uPA/uPAR initiates inflammatory responses in macrophages and FLS through activation of PI3K/Akt signaling pathways. Furthermore, uPAR plays a dual role in osteoclastogenesis under the presence/absence of growth factors like monocyte-colony stimulating factor (M-CSF). Overall, this review emphasizes the role of uPA/uPAR on various immune cells, signaling pathways and osteoclastogenesis involved in RA pathogenesis.


Assuntos
Artrite Reumatoide/enzimologia , Articulações/enzimologia , Proteínas de Membrana/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Humanos , Articulações/imunologia , Articulações/patologia , Osteogênese , Prognóstico , Transdução de Sinais
18.
Cytokine ; 77: 115-26, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26556105

RESUMO

The present study was aimed to investigate the anti-arthritic effect of majoon ushba (MU) and its underlying mechanism in adjuvant induced arthritis (AIA) rats. Arthritis was induced by intradermal injection of complete freund's adjuvant (0.1ml) into the right hind paw of the Wistar albino rats. MU (1000mg/kg/b.wt) and methotrexate (3mg/kg/b.wt) were administered from day 11 to day 18th for 8days after adjuvant induction. We have found that MU treatment significantly increased the level of anti-inflammatory cytokine (IL-10) and inhibited the over production of pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6) and monocyte chemoattractant protein-1 (MCP-1) (ELISA) in the serum of adjuvant-induced arthritic rats. The mRNA expression of pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6, and IL-17), inflammatory enzymes (inducible nitric oxide synthase (iNOS) and cyclo-oxygenase-2 (COX-2)), MCP-1, receptor activator of nuclear factor-kB ligand (RANKL) and transcription factors (NF-кB and AP-1) (Real-Time PCR) was found significantly downregulated in the synovial tissues of MU treated arthritic rats. In addition, the protein expression of NF-кB, IL-17, COX-2, and RANKL (western blotting and immunohistochemistry analysis) was found reduced. On the other hand, osteoprotegerin (OPG), a bone remodeling marker was found to be elevated in synovial tissues of MU treated arthritic rats. Furthermore, MU treatment prevented body weight loss and reduced the joint paw edema, cell infiltration, cartilage and bone degradation as evidenced by the histopathological and radiological analysis. In conclusion, our current findings provide scientific evidence for the traditional claim of MU as an anti-arthritic drug.


Assuntos
Artrite Experimental/prevenção & controle , Artrite Reumatoide/prevenção & controle , Biomarcadores/metabolismo , Remodelação Óssea/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Preparações de Plantas/farmacologia , Animais , Artrite Experimental/genética , Artrite Experimental/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Biomarcadores/sangue , Western Blotting , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/sangue , Citocinas/genética , Citocinas/metabolismo , Edema/prevenção & controle , Feminino , Expressão Gênica/efeitos dos fármacos , Membro Posterior/efeitos dos fármacos , Membro Posterior/metabolismo , Membro Posterior/patologia , Imuno-Histoquímica , Mediadores da Inflamação/sangue , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fitoterapia/métodos , Plantas Medicinais/química , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Immunol Invest ; 44(4): 411-26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25942351

RESUMO

The present study was aimed to investigate the anti-arthritic effect of triphala and its underlying mechanism on adjuvant-induced rat model. For comparison purpose, non-steroidal anti-inflammatory drug indomethacin was used. Arthritis was induced by intradermal injection of complete Freund's adjuvant (0.1 ml) into the right hind paw of the Wistar albino rats. Triphala (100 mg/kg body weight [bwt]) was administered intraperitoneally (from 11th to 20th day) after the arthritis induction. Arthritis induction increased the levels of reactive oxygen species (LPO and NO), elastase, and mRNA expression of pro-inflammatory cytokines (TNF-α, IL-ß, IL-17, IL-6 and MCP-1), inflammatory marker enzymes (iNOS and COX-2), receptor activator of nuclear factor kappa-B ligand (RANKL), and transcription factors (NF-kB p65 and AP-1) in the paw tissues of rats. The levels of bone collagen were found to decrease with increased urinary constituents (hydroxyproline and total glycosaminoglycans) in arthritic rats. In addition, the immunohistochemistry analysis revealed increased expression of NF-kBp65 and COX-2 in the paw tissues of arthritic rats. However, administration of triphala significantly inhibited the biochemical and molecular alterations in adjuvant-induced arthritic rats compared to indomethacin (3 mg/kg bwt) as evidenced by the radiological and histopathological analysis. In conclusion, our results suggest that triphala administration ameliorate bone and cartilage degradation during rheumatoid arthritis.


Assuntos
Artrite Experimental/metabolismo , Artrite Experimental/patologia , Articulações/efeitos dos fármacos , Articulações/patologia , Extratos Vegetais/farmacologia , Adjuvantes Imunológicos/efeitos adversos , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/imunologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/imunologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Cartilagem/efeitos dos fármacos , Cartilagem/imunologia , Cartilagem/metabolismo , Cartilagem/patologia , Colágeno , Ativação Enzimática , Articulações/imunologia , Articulações/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Ratos
20.
Cell Immunol ; 287(1): 62-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24394943

RESUMO

In the present study, trikatu, an herbal compound was evaluated for its immunomodulatory and anti-inflammatory properties with reference to cell mediated immune responses (delayed type hypersensitivity reaction), humoral immune response (haemagglutination titer and plaque forming assay), macrophage phagocytic index, circulating immune complex and inflammatory mediators in rats. For comparison purposes, indomethacin was used as a reference drug for anti-inflammatory studies. The results obtained in our study showed a significant decrease in cell mediated immune responses, humoral immune responses (haemagglutination titre and plaque forming assay) and macrophage phagocytic index in trikatu treated rats (1000 mg/kg/b.wt.) compared to control animals implying its immunosuppressive property. In addition, significant anti-inflammatory effects were observed in trikatu treated adjuvant induced arthritic rats by a reduction in the levels of circulating immune complexes and inflammatory mediators (TNF-alpha and Interleukin-1beta). Thus, in conclusion, our data suggest that trikatu could be considered as a potential anti-inflammatory agent for treating autoimmune inflammatory disorders like rheumatoid arthritis with immunosuppressive property.


Assuntos
Alcenos/administração & dosagem , Anti-Inflamatórios não Esteroides/administração & dosagem , Artrite Reumatoide/terapia , Hipersensibilidade Tardia/terapia , Macrófagos/imunologia , Piperidinas/administração & dosagem , Animais , Células Cultivadas , Feminino , Técnica de Placa Hemolítica , Medicina Herbária , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Imunomodulação , Indometacina/administração & dosagem , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Fagocitose/efeitos dos fármacos , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA