RESUMO
BACKGROUND: . The Mycobacterium tuberculosis Beijing genotype is globally spread lineage with important medical properties that however vary among its subtypes. M. tuberculosis Beijing 14717-15-cluster was recently discovered as both multidrug-resistant, hypervirulent, and highly-lethal strain circulating in the Far Eastern region of Russia. Here, we aimed to analyze its pathogenomic features and phylogeographic pattern. RESULTS: . The study collection included M. tuberculosis DNA collected between 1996 and 2020 in different world regions. The bacterial DNA was subjected to genotyping and whole genome sequencing followed by bioinformatics and phylogenetic analysis. The PCR-based assay to detect specific SNPs of the Beijing 14717-15-cluster was developed and used for its screening in the global collections. Phylogenomic and phylogeographic analysis confirmed endemic prevalence of the Beijing 14717-15-cluster in the Asian part of Russia, and distant common ancestor with isolates from Korea (> 115 SNPs). The Beijing 14717-15-cluster isolates had two common resistance mutations RpsL Lys88Arg and KatG Ser315Thr and belonged to spoligotype SIT269. The Russian isolates of this cluster were from the Asian Russia while 4 isolates were from the Netherlands and Spain. The cluster-specific SNPs that significantly affect the protein function were identified in silico in genes within different categories (lipid metabolism, regulatory proteins, intermediary metabolism and respiration, PE/PPE, cell wall and cell processes). CONCLUSIONS: . We developed a simple method based on real-time PCR to detect clinically significant MDR and hypervirulent Beijing 14717-15-cluster. Most of the identified cluster-specific mutations were previously unreported and could potentially be associated with increased pathogenic properties of this hypervirulent M. tuberculosis strain. Further experimental study to assess the pathobiological role of these mutations is warranted.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Filogeografia , Filogenia , Genótipo , Tuberculose/epidemiologia , Tuberculose/microbiologiaRESUMO
BACKGROUND: Molecular epidemiological studies of Mycobacterium tuberculosis (MTB) are the core of current research to find out the association of the M. tuberculosis genotypes with its outbreak and transmission. The high prevalence of the Beijing genotype strain among multidrug resistance (MDR) TB has already been reported in various studies around India. The overall objective of this study was to detect the prevalence of Beijing genotype strains of MDR M. tuberculosis and their association with the clinical characteristics of TB patients. METHODS: In this study 381 M. tuberculosis clinical isolates were obtained from sputum samples from 2008 to 2014. The multiplex-PCR and Spoligotyping (n = 131) methods were used to investigate the prevalence of the Beijing genotype strain by targeting the Rv2820 gene and their association with drug resistance and clinical characteristics of TB patients. The drug susceptibility testing of first-line anti-TB drugs was performed by using the proportion method and MGIT960. A collection of isolates having Beijing and non-Beijing strains were also characterized to see if Beijing genotype strains had a higher rate of mutations at codons 516, 526 and 531 of the 81-bp region of the rpoB gene, codon 315 of the katG gene, and codon 306 of the embB gene. RESULTS: The sensitivities and specificities of multiplex-PCR assay compared to that of standard Spoligotyping was detected to be 100%. Further, we observe that the multi drug-resistance was significantly associated with Beijing genotype strains (p = 0.03) and a strong correlation between Beijing genotype strains and specific resistance mutations at the katG315, rpoB531, and embB306 codons (p = < 0.0001, < 0.0001 & 0.0014 respectively) was also found. CONCLUSIONS: This rapid, simple, and cost-effective multiplex PCR assay can effectively be used for monitoring the prevalence of Beijing genotype strains in low resource settings. Findings of this study may provide a scientific basis for the development of new diagnostic tools for detection and effective management of DR-TB in countries with a higher incidence rate of Beijing genotype strains.
Assuntos
Proteínas de Bactérias/genética , Catalase/genética , RNA Polimerases Dirigidas por DNA/genética , Mycobacterium tuberculosis/genética , Pentosiltransferases/genética , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antituberculosos/farmacologia , Criança , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Genótipo , Humanos , Índia/epidemiologia , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Multiplex/métodos , Taxa de Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Adulto JovemRESUMO
The species within the Mycobacterium tuberculosis Complex (MTBC) have undergone numerous taxonomic and nomenclatural changes, leaving the true structure of the MTBC in doubt. We used next-generation sequencing (NGS), digital DNA-DNA hybridization (dDDH), and average nucleotide identity (ANI) to investigate the relationship between these species. The type strains of Mycobacterium africanum, Mycobacterium bovis, Mycobacterium caprae, Mycobacterium microti and Mycobacterium pinnipedii were sequenced via NGS. Pairwise dDDH and ANI comparisons between these, previously sequenced MTBC type strain genomes (including 'Mycobacterium canettii', 'Mycobacterium mungi' and 'Mycobacterium orygis') and M. tuberculosis H37RvT were performed. Further, all available genome sequences in GenBank for species in or putatively in the MTBC were compared to H37RvT. Pairwise results indicated that all of the type strains of the species are extremely closely related to each other (dDDH: 91.2-99.2â%, ANI: 99.21-99.92â%), greatly exceeding the respective species delineation thresholds, thus indicating that they belong to the same species. Results from the GenBank genomes indicate that all the strains examined are within the circumscription of H37RvT (dDDH: 83.5-100â%). We, therefore, formally propose a union of the species of the MTBC as M. tuberculosis. M. africanum, M. bovis, M. caprae, M. microti and M. pinnipedii are reclassified as later heterotypic synonyms of M. tuberculosis. 'M. canettii', 'M. mungi', and 'M. orygis' are classified as strains of the species M. tuberculosis. We further recommend use of the infrasubspecific term 'variant' ('var.') and infrasubspecific designations that generally retain the historical nomenclature associated with the groups or otherwise convey such characteristics, e.g. M. tuberculosis var. bovis.
Assuntos
Mycobacterium tuberculosis/classificação , Filogenia , Técnicas de Tipagem Bacteriana/métodos , DNA Bacteriano/genética , Hibridização de Ácido Nucleico , Análise de Sequência de DNARESUMO
Molecular typing has revolutionized epidemiological studies of infectious diseases, including those of a mycobacterial etiology. With the advent of fingerprinting techniques, many traditional concepts regarding transmission, infectivity, or pathogenicity of mycobacterial bacilli have been revisited, and their conventional interpretations have been challenged. Since the mid-1990s, when the first typing methods were introduced, a plethora of other modalities have been proposed. So-called molecular epidemiology has become an essential subdiscipline of modern mycobacteriology. It serves as a resource for understanding the key issues in the epidemiology of tuberculosis and other mycobacterial diseases. Among these issues are disclosing sources of infection, quantifying recent transmission, identifying transmission links, discerning reinfection from relapse, tracking the geographic distribution and clonal expansion of specific strains, and exploring the genetic mechanisms underlying specific phenotypic traits, including virulence, organ tropism, transmissibility, or drug resistance. Since genotyping continues to unravel the biology of mycobacteria, it offers enormous promise in the fight against and prevention of the diseases caused by these pathogens. In this review, molecular typing methods for Mycobacterium tuberculosis and nontuberculous mycobacteria elaborated over the last 2 decades are summarized. The relevance of these methods to the epidemiological investigation, diagnosis, evolution, and control of mycobacterial diseases is discussed.
Assuntos
Infecções por Mycobacterium/diagnóstico , Infecções por Mycobacterium/epidemiologia , Mycobacterium/classificação , Técnicas de Tipagem Bacteriana , Humanos , Epidemiologia Molecular , Tipagem Molecular , Mycobacterium/genética , Mycobacterium/isolamento & purificação , Infecções por Mycobacterium/microbiologia , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificaçãoRESUMO
Mixed infections and heteroresistance of Mycobacterium tuberculosis contribute to the difficulty of diagnosis, treatment, and control of tuberculosis. However, there is still no proper solution for these issues. This study aimed to investigate the potential relationship between mixed infections and heteroresistance and to determine the high-risk groups related to these factors. A total of 499 resistant and susceptible isolates were subjected to spoligotyping and 24-locus variable-number tandem repeat methods to analyze their genotypic lineages and the occurrence of mixed infections. Two hundred ninety-two randomly selected isolates were sequenced on their rpoB gene to examine mutations and heteroresistance. The results showed that 12 patients had mixed infections, and the corresponding isolates belonged to Manu2 (n = 8), Beijing (n = 2), T (n = 1), and unknown (n = 1) lineages. Manu2 was found to be significantly associated with mixed infections (odds ratio, 47.72; confidence interval, 9.68 to 235.23; P < 0.01). Four isolates (1.37%) were confirmed to be heteroresistant, which was caused by mixed infections in three (75%) isolates; these belonged to Manu2. Additionally, 3.8% of the rifampin-resistant isolates showing no mutation in the rpoB gene were significantly associated with mixed infections (χ(2), 56.78; P < 0.01). This study revealed for the first time that Manu2 was the predominant group in the cases of mixed infections, and this might be the main reason for heteroresistance and a possible mechanism for isolates without any mutation in the rpoB gene to become rifampin resistant. Further studies should focus on this lineage to clarify its relevance to mixed infections.
Assuntos
Antituberculosos/farmacologia , Coinfecção/microbiologia , Farmacorresistência Bacteriana , Mycobacterium tuberculosis/efeitos dos fármacos , Rifampina/farmacologia , Tuberculose/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Coinfecção/epidemiologia , Estudos Transversais , RNA Polimerases Dirigidas por DNA/genética , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Tipagem Molecular , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Estudos Retrospectivos , Análise de Sequência de DNA , Tuberculose/epidemiologia , Adulto JovemRESUMO
We recently detected the spoligotype patterns of strains of Mycobacterium pinnipedii, a species of the Mycobacterium tuberculosis complex, in sputum samples from nine cases with pulmonary tuberculosis residing in Porto Alegre, South Brazil. Because this species is rarely encountered in humans, we further characterized these nine isolates by additional genotyping techniques, including 24-locus mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing, verification of the loci TbD1, RD9, pks15/1, RD(Rio), and fbpC, the insertion of IS6110 at a site specific to the M. tuberculosis Latin American Mediterranean (LAM) lineage, and whole-genome sequencing. The combined analysis of these markers revealed that the isolates are in fact M. tuberculosis and more specifically belong to the LAM genotype. Most of these isolates (n8) were shown to be multidrug resistant (MDR), which prompted us to perform partial sequencing of the rpoA, rpoB, rpoC, katG, and inhA genes. Seven isolates (77.8%) carried the S315T mutation in katG, and one of these (11%) also presented the C((-17)T single-nucleotide polymorphism (SNP) in inhA. Interestingly, six of the MDR isolates also presented an undescribed insertion of 12 nucleotides (CCA GAA CAA CCC) in codon 516 of rpoB. No putative compensatory mutation was found in either rpoA or rpoC. This is the first report of an M. tuberculosis LAM family strain with a convergent M. pinnipedii spoligotype. These spoligotypes are observed in genotype databases at a modest frequency, highlighting that care must be taken when identifying isolates in the M. tuberculosis complex on the basis of single genetic markers.
Assuntos
Farmacorresistência Bacteriana Múltipla , Tipagem Molecular , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Antituberculosos/farmacologia , Brasil , Genes Bacterianos , Marcadores Genéticos , Técnicas de Genotipagem , Humanos , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Análise de Sequência de DNARESUMO
BACKGROUND: The zoonosis bovine tuberculosis (TB) is known to be responsible for a considerable proportion of extrapulmonary TB. In Mozambique, bovine TB is a recognised problem in cattle, but little has been done to evaluate how Mycobacterium bovis has contributed to human TB. We here explore the public health risk for bovine TB in Maputo, by characterizing the isolates from tuberculous lymphadenitis (TBLN) cases, a common manifestation of bovine TB in humans, in the Pathology Service of Maputo Central Hospital, in Mozambique, during one year. RESULTS: Among 110 patients suspected of having TBLN, 49 had a positive culture result. Of those, 48 (98%) were positive for Mycobacterium tuberculosis complex and one for nontuberculous mycobacteria. Of the 45 isolates analysed by spoligotyping and Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem Repeat (MIRU-VNTR), all were M. tuberculosis. No M. bovis was found. Cervical TBLN, corresponding to 39 (86.7%) cases, was the main cause of TBLN and 66.7% of those where from HIV positive patients. We found that TBLN in Maputo was caused by a variety of M. tuberculosis strains. The most prevalent lineage was the EAI (n = 19; 43.2%). Particular common spoligotypes were SIT 48 (EAI1_SOM sublineage), SIT 42 (LAM 9), SIT 1 (Beijing) and SIT53 (T1), similar to findings among pulmonary cases. CONCLUSIONS: M. tuberculosis was the main etiological agent of TBLN in Maputo. M. tuberculosis genotypes were similar to the ones causing pulmonary TB, suggesting that in Maputo, cases of TBLN arise from the same source as pulmonary TB, rather than from an external zoonotic source. Further research is needed on other forms of extrapulmonary TB and in rural areas where there is high prevalence of bovine TB in cattle, to evaluate the risk of transmission of M. bovis from cattle to humans.
Assuntos
Mycobacterium tuberculosis/isolamento & purificação , Tuberculose dos Linfonodos/epidemiologia , Adolescente , Adulto , Idoso , Feminino , Variação Genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Tipagem Molecular , Moçambique/epidemiologia , Mycobacterium bovis/isolamento & purificação , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Adulto JovemRESUMO
Mycobacterium tuberculosis Beijing genotype strains are rapidly disseminating, frequently hypervirulent, and multidrug resistant. Here, we describe a method for their rapid detection by real-time PCR that targets the specific IS6110 insertion in the dnaA-dnaN genome region. The method was evaluated with a geographically and genetically diverse collection representing areas in East Asia and the former Soviet Union in which the Beijing genotype is endemic and epidemic (i.e., major foci of its global propagation) and with clinical specimens.
Assuntos
Mycobacterium tuberculosis/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Tuberculose/diagnóstico , Técnicas de Tipagem Bacteriana/métodos , DNA Bacteriano/genética , Genes Bacterianos/genética , Genótipo , HumanosRESUMO
Mycobacterium tuberculosis Beijing strains represent targets of special importance for molecular surveillance of tuberculosis (TB), especially because they are associated with spread of multidrug resistance in some world regions. Standard 24-locus mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing lacks resolution power for accurately discriminating closely related clones that often compose Beijing strain populations. Therefore, we evaluated a set of 7 additional, hypervariable MIRU-VNTR loci for better resolution and tracing of such strains, using a collection of 535 Beijing isolates from six world regions where these strains are known to be prevalent. The typeability and interlaboratory reproducibility of these hypervariable loci were lower than those of the 24 standard loci. Three loci (2163a, 3155, and 3336) were excluded because of their redundant variability and/or more frequent noninterpretable results compared to the 4 other markers. The use of the remaining 4-locus set (1982, 3232, 3820, and 4120) increased the number of types by 52% (from 223 to 340) and reduced the clustering rate from 58.3 to 36.6%, when combined with the use of the standard 24-locus set. Known major clonal complexes/24-locus-based clusters were all subdivided, although the degree of subdivision varied depending on the complex. Only five single-locus variations were detected among the hypervariable loci of an additional panel of 92 isolates, representing 15 years of clonal spread of a single Beijing strain in a geographically restricted setting. On this calibrated basis, we propose this 4-locus set as a consensus for subtyping Beijing clonal complexes and clusters, after standard typing.
Assuntos
Repetições Minissatélites , Tipagem Molecular/métodos , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Humanos , Epidemiologia Molecular/métodos , Tuberculose/epidemiologiaRESUMO
BACKGROUND & OBJECTIVES: One-fifth of the world's new tuberculosis (TB) cases and two-thirds of cases in the South East Asian region occur in India. Molecular typing of Mycobacterium tuberculosis isolates has greatly facilitated to understand the transmission of TB. This study was aimed to investigate the molecular epidemiology of M. tuberculosis genotypes in Varanasi, north India, and their association with clinical presentation among patients with pulmonary TB. METHODS: M. tuberculosis isolates from 104 TB patients attending a tertiary referral hospital of north India were screened for susceptibility to isoniazid (INH), rifampicin (RIF), ethambutol (EMB) and streptomycin (STR) by proportion method and multiplex-allele-specific-polymerase chain reaction (MAS-PCR). These were genotyped by spoligotyping. The spoligotype patterns were compared with those in the international SITVIT2 spoligotyping database. RESULTS: Eighty three of 104 isolates were distributed in 38 SITs, of which SIT3366 was newly created within the present study. The mass of ongoing transmission with MDR-TB isolates in Varanasi, northern India, was linked to Beijing genotype followed by the CAS1_Delhi lineage. HIV-seropositive patients had a significantly higher proportion of clustered isolates than HIV-seronegative patients and compared with the wild type(wt) isolates, the isolates with katG315Thr mutation were considerably more likely to be clustered. INTERPRETATION & CONCLUSIONS: This study gives an insight into the M. tuberculosis genetic biodiversity in Varanasi, north India, the predominant spoligotypes and their impact on disease transmission. In this region of north India, TB is caused by a wide diversity of spoligotypes with predominance of four genotype lineages: Beijing, CAS, EAI and T. The Beijing genotype was the most frequent single spoligotype and strongly associated with multi drug resistant (MDR)-TB isolates. These findings may have important implications for control and prevention of TB in north India.
Assuntos
Farmacorresistência Bacteriana/genética , Variação Genética , Mycobacterium tuberculosis/genética , Tuberculose/epidemiologia , Tuberculose/microbiologia , DNA Intergênico/genética , Etambutol , Genótipo , Humanos , Índia/epidemiologia , Isoniazida , Epidemiologia Molecular , Mutação/genética , Reação em Cadeia da Polimerase , Rifampina , EstreptomicinaRESUMO
Species belonging to the Mycobacterium kansasii complex (MKC) are frequently isolated from humans and the environment and can cause serious diseases. The most common MKC infections are caused by the species M. kansasii (sensu stricto), leading to tuberculosis-like disease. However, a broad spectrum of virulence, antimicrobial resistance and pathogenicity of these non-tuberculous mycobacteria (NTM) are observed across the MKC. Many genomic aspects of the MKC that relate to these broad phenotypes are not well elucidated. Here, we performed genomic analyses from a collection of 665 MKC strains, isolated from environmental, animal and human sources. We inferred the MKC pangenome, mobilome, resistome, virulome and defence systems and show that the MKC species harbours unique and shared genomic signatures. High frequency of presence of prophages and different types of defence systems were observed. We found that the M. kansasii species splits into four lineages, of which three are lowly represented and mainly in Brazil, while one lineage is dominant and globally spread. Moreover, we show that four sub-lineages of this most distributed M. kansasii lineage emerged during the twentieth century. Further analysis of the M. kansasii genomes revealed almost 300 regions of difference contributing to genomic diversity, as well as fixed mutations that may explain the M. kansasii's increased virulence and drug resistance.
Assuntos
Genoma Bacteriano , Genômica , Infecções por Mycobacterium não Tuberculosas , Mycobacterium kansasii , Filogenia , Mycobacterium kansasii/genética , Mycobacterium kansasii/classificação , Mycobacterium kansasii/isolamento & purificação , Humanos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Animais , Virulência/genéticaRESUMO
A significant knowledge gap exists concerning the geographical distribution of nontuberculous mycobacteria (NTM) isolation worldwide. To provide a snapshot of NTM species distribution, global partners in the NTM-Network European Trials Group (NET) framework (www.ntm-net.org), a branch of the Tuberculosis Network European Trials Group (TB-NET), provided identification results of the total number of patients in 2008 in whom NTM were isolated from pulmonary samples. From these data, we visualised the relative distribution of the different NTM found per continent and per country. We received species identification data for 20 182 patients, from 62 laboratories in 30 countries across six continents. 91 different NTM species were isolated. Mycobacterium avium complex (MAC) bacteria predominated in most countries, followed by M. gordonae and M. xenopi. Important differences in geographical distribution of MAC species as well as M. xenopi, M. kansasii and rapid-growing mycobacteria were observed. This snapshot demonstrates that the species distribution among NTM isolates from pulmonary specimens in the year 2008 differed by continent and differed by country within these continents. These differences in species distribution may partly determine the frequency and manifestations of pulmonary NTM disease in each geographical location.
Assuntos
Pneumopatias/microbiologia , Pulmão/microbiologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas/genética , Geografia , Saúde Global , Humanos , Pneumopatias/epidemiologia , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Mycobacterium avium , Mycobacterium kansasii , Mycobacterium xenopi , Especificidade da EspécieRESUMO
Numerous reports have documented isolated transmission events or clonal outbreaks of multidrug-resistant Mycobacterium tuberculosis strains, but knowledge of their epidemic spread remains limited. In this study, we evaluated drug resistance, strain diversity, and clustering rates in patients diagnosed with multidrug-resistant (MDR) tuberculosis (TB) at the National Health Laboratory Service (NHLS) Central TB Laboratory in Johannesburg, South Africa, between March 2004 and December 2007. Phenotypic drug susceptibility testing was done using the indirect proportion method, while each isolate was genotyped using a combination of spoligotyping and 12-MIRU typing (12-locus multiple interspersed repetitive unit typing). Isolates from 434 MDR-TB patients were evaluated, of which 238 (54.8%) were resistant to four first-line drugs (isoniazid, rifampin, ethambutol, and streptomycin). Spoligotyping identified 56 different strains and 28 clusters of variable size (2 to 71 cases per cluster) with a clustering rate of 87.1%. Ten clusters included 337 (77.6%) of all cases, with strains of the Beijing genotype being most prevalent (16.4%). Combined analysis of spoligotyping and 12-MIRU typing increased the discriminatory power (Hunter Gaston discriminatory index [HGDI] = 0.962) and reduced the clustering rate to 66.8%. Resolution of Beijing genotype strains was further enhanced with the 24-MIRU-VNTR (variable-number tandem repeat) typing method by identifying 15 subclusters and 19 unique strains from twelve 12-MIRU clusters. High levels of clustering among a variety of strains suggest a true epidemic spread of MDR-TB in the study setting, emphasizing the urgency of early diagnosis and effective treatment to reduce transmission within this community.
Assuntos
Farmacorresistência Bacteriana Múltipla , Epidemias , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Adolescente , Adulto , Idoso , Antituberculosos/farmacologia , Criança , Pré-Escolar , Análise por Conglomerados , Feminino , Genótipo , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Tipagem Molecular , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , África do Sul/epidemiologia , Adulto JovemRESUMO
BACKGROUND: The present study aimed to characterize Mycobacterium tuberculosis population structure and to identify transmission chains and risk factors by prospective molecular typing in conjunction with conventional epidemiological investigations in the French overseas department of Guadeloupe. METHODS: The study included all the culture-positive TB cases (1 clinical isolate per patient; n = 129) diagnosed between a seven year period (April 4th, 1999 to December 31st, 2005). Prospective molecular typing was performed using spoligotyping and VNTRs, and a subset of 44 M. tuberculosis isolates found to be clustered was retrospectively typed using 12-loci MIRUs. Data were compared using the SITVIT2 database, followed by analysis of risk factors in function of clustering of the isolates and available demographic and socioeconomic data. RESULTS: The study sample was characterized by a majority of new cases (87.4%); a moderate proportion of drug-resistance (7.8%); a high level of immigration (51.2% foreign-born) originating from high TB/HIV incidence neighboring islands such as Haiti or Dominican Republic; lower socioeconomic conditions (70.7% of jobless, average income 824 EUR/month); and a significantly higher proportion of TB/HIV co-infected cases (38.2% vs. 8.5%; p < 0.001), and extrapulmonary disease (18.2% vs. 4.8%; p < 0.02) among migrants as compared to French patients. The study revealed an important delay in access to healthcare with a median delay of 74.5 days between the 1st symptoms and clinical suspicion of TB. Prospective molecular typing based on spoligotyping and 5-loci VNTRs showed that evolutionary recent Euro-American lineages predominated in Guadeloupe (91.5% of isolates). In conjunction with epidemiological data, it allowed to estimate a recent transmission rate of 18.6%, which was close to the rate of 16.7% estimated using retrospective 12-loci MIRU typing. Although a higher proportion of cases in older age-group were apparently linked to reactivation; univariate analysis of risk factors did not allow pinpointing specific risk factors for a patient to belong to a TB transmission group. CONCLUSIONS: Ongoing TB transmission in the insular, low TB-incidence setting of Guadeloupe can be defined as follows: (i) a significant proportion of imported cases of the disease from neighboring islands; (ii) significantly higher TB/HIV coinfection among foreign-born cases; and, (iii) a higher proportion of cases affecting older age-group among French patients due to reactivation. This study emphasizes the need for universal typing using spoligotyping and 15-loci MIRUs in prospective studies.
Assuntos
Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Adolescente , Adulto , Criança , Pré-Escolar , Análise por Conglomerados , Farmacorresistência Bacteriana , Feminino , Genótipo , Guadalupe/epidemiologia , Acessibilidade aos Serviços de Saúde , Humanos , Incidência , Lactente , Masculino , Pessoa de Meia-Idade , Repetições Minissatélites , Tipagem Molecular , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/isolamento & purificação , Estudos Prospectivos , Estudos Retrospectivos , Fatores de Risco , Tuberculose/epidemiologia , Adulto JovemRESUMO
Data obtained from new sequencing technologies are evolving rapidly, leading to the development of specific bioinformatic tools, pipelines and softwares. Several algorithms and tools are today available allowing a better identification and description of Mycobacterium tuberculosis complex (MTBC) isolates worldwide. Our approach consists in applying existing methods to analyze DNA sequencing data (from FASTA or FASTQ files), and tentatively extract meaningful information that would facilitate identification as well as a better understanding and management of MTBC isolates (taking into account whole genome sequencing and classical genotyping data). The aim of this study is to propose a pipeline analysis allowing to potentially simplify MTBC data analysis by providing different ways to interpret genomic or genotyping information based on existing tools. Furthermore, we propose a "reconciledTB" list making a link with results directly obtained from whole genome sequencing (WGS) data and results obtained from classical genotyping analysis (data inferred from SpoTyping and MIRUReader). Data visualization graphics and trees generated provide additional elements to better understand and confer associations among information overlap analyses. Additionally, comparison between data entered in an international genotyping database (SITVITEXTEND) and ensuing data obtained from the pipeline not only provide meaningful information, but further suggest that simpiTB could also be suitable for new data integration in specific TB genotyping databases.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Tuberculose/microbiologia , Filogenia , Genômica , Sequenciamento Completo do Genoma/métodosRESUMO
OBJECTIVE: To determine the prevalence of multidrug-resistant tuberculosis (MDR-TB) among patients with new smear-positive pulmonary TB in Port-au-Prince, Haiti. METHODS: Sputum samples were cultured from 1 006 patients newly diagnosed with TB in 2008. The core region of the rpoB gene that is associated with resistance to rifampin was sequenced. All isolates with rpoB mutations were sent to the New York State reference laboratory for conventional drug susceptibility testing (DST). All isolates were also tested with the GenoType MTBDRplus line-probe assay. RESULTS: Mycobacterium tuberculosis was isolated from 906 patients. Twenty-six (2.9%) of the isolates had missense mutations or deletions in rpoB and were resistant to rifampin by DST. All 26 were also resistant to isoniazid and classified as MDR-TB. Forty-six control isolates without rpoB mutations were found to be rifampin sensitive by DST. The GenoType MTBDRplus line-probe assay correctly identified 26 MDR-TB strains. It misclassified one pansusceptible isolate as rifampin resistant. CONCLUSIONS: This study shows an MDR-TB prevalence of 2.9% in newly diagnosed TB patients in Haiti and suggests that rpoB sequencing and hybridization assays are good screening tools for early detection of MDR-TB.
Assuntos
Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Adulto , Antituberculosos/farmacologia , Proteínas de Bactérias/efeitos dos fármacos , Proteínas de Bactérias/genética , Cidades/epidemiologia , Estudos Transversais , RNA Polimerases Dirigidas por DNA , Feminino , Haiti/epidemiologia , Humanos , Isoniazida/farmacologia , Masculino , Mycobacterium tuberculosis/genética , Prevalência , Rifampina/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/genética , Adulto JovemRESUMO
Limited data are available for bovine tuberculosis and the infections it can cause in humans and other mammals. We therefore constructed a publicly accessible SITVITBovis database that incorporates genotyping and epidemiological data on Mycobacterium bovis. It also includes limited data on Mycobacterium caprae (previously synonymous with the name M. bovis subsp. Caprae) that can infect both animals and humans. SITVITBovis incorporates data on 25,741 isolates corresponding to 60 countries of origin (75 countries of isolation). It reports a total of 1000 spoligotype patterns: 537 spoligotype international types (SITs, containing 25 278 clinical isolates) and 463 orphan patterns, allowing a wide overview of the geographic distribution of various phylogenetical sublineages (BOV_1, BOV_2, BOV_3 and BOV_4-CAPRAE). The SIT identifiers of the SITVITBovis were compared to the SB numbers of the Mbovis.org database to facilitate crosscheck among databases. Note that SITVITBovis also contains limited information on mycobacterial interspersed repetitive units-variable number of tandem repeats when available. Significant differences were observed when comparing age/gender of human isolates as well as various hosts. The database includes information on the regions where a strain was isolated as well as hosts involved, making it possible to see geographic trends. SITVITBovis is publicly accessible at: http://www.pasteur-guadeloupe.fr:8081/SITVIT_Bovis. Finally, a future second version is currently in progress to allow query of associated whole-genome sequencing data. Database URLhttp://www.pasteur-guadeloupe.fr:8081/SITVIT_Bovis.
Assuntos
Mycobacterium bovis , Animais , Técnicas de Tipagem Bacteriana , Bases de Dados Factuais , Humanos , Repetições Minissatélites , Mycobacterium bovis/genéticaRESUMO
This study shows the benefit of spoligotyping coupled to mycobacterial interspersed repetitive-unit (MIRU) typing to pinpoint circulating Mycobacterium tuberculosis genotypes in Guadeloupe, Martinique, and French Guiana. We hereby propose reduced 4-locus and 6-locus subsets for LAM and Haarlem lineage strains that predominate in South America and the Caribbean, retaining 99.35% and 99.64% of the total discriminatory power of the 12-locus scheme, respectively.
Assuntos
Tipagem Molecular , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Tuberculose/epidemiologia , Tuberculose/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , DNA Bacteriano/genética , Guiana Francesa/epidemiologia , Genótipo , Guadalupe/epidemiologia , Humanos , Masculino , Martinica/epidemiologia , Pessoa de Meia-Idade , Epidemiologia Molecular/métodos , Mycobacterium tuberculosis/isolamento & purificação , Adulto JovemRESUMO
We ran a comparative analysis of all patients for whom a positive culture of Mycobacterium tuberculosis complex was available between April 2004 and October 2005 and whose HIV serology results were known, with spoligotyping results (n = 163) split into 49 HIV-positive patients and 114 HIV-negative patients. Spoligotype international type 373 (SIT373) (T1 lineage), which was highly prevalent among the HIV(+) patients, was totally absent from the HIV(-) population, suggesting that we had a specific clone affecting nearly 1/3 of all HIV-tuberculosis (TB)-coinfected patients. Among the LAM10-CAM sublineage strains, we had only a single strain of SIT403 among HIV(-) patients (0.88%), as opposed to 12.25% of the HIV(+) population (χ(2) = 10.77; P < 0.01), indicating a strong association between the strain and the HIV(+) population. The LAM10-CAM lineage spoligotype SIT61 was prevalent among the 2 subsets (37.72% in HIV(-) versus 12.24% in HIV(+) populations), though, with a significant difference between the 2 groups (χ(2) = 10.53; P < 0.01). However, there was no significant difference for SIT53 (T1 lineage) in the 2 subsets: 6.14 versus 8.2% (χ(2) = 0.22; P > 0.05). A total of 7/49, or 14.3%, other SITs among HIV(+) patients were not found among the HIV(-) patients. When added to the most prevalent SIT among HIV(+) patients (SIT373; n = 16), 23/49, or 47%, isolates among HIV-TB-coinfected patients were unique. We conclude that further studies should be carried out to investigate the evolution of these genotypes and others in the emergence of multidrug resistance and control of tuberculosis in Nigeria.
Assuntos
Tipagem Molecular , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Análise por Conglomerados , Impressões Digitais de DNA , Genótipo , Infecções por HIV/complicações , Humanos , Epidemiologia Molecular , Mycobacterium tuberculosis/isolamento & purificação , NigériaRESUMO
While foreign-born persons constitute only 11% of the population in the state of Rhode Island, they account for more than 65% of incident tuberculosis (TB) annually. We investigated the molecular-epidemiological differences between foreign-born and U.S.-born TB patients to estimate the degree of recent transmission and identify predictors of clustering. A total of 288 isolates collected from culture-confirmed TB cases in Rhode Island between 1995 and 2004 were fingerprinted by spoligotyping and 12-locus mycobacterial interspersed repetitive units. Of the 288 fingerprinted isolates, 109 (37.8%) belonged to 36 genetic clusters. Our findings demonstrate that U.S.-born patients, Hispanics, Asian/Pacific islanders, and uninsured patients were significantly more likely to be clustered. Recent transmission among the foreign-born population was restricted and occurred mostly locally, within populations originating from the same region. Nevertheless, TB transmission between the foreign-born and U.S.-born population should not be neglected, since 80% of the mixed clusters of foreign- and U.S.-born persons arose from a foreign-born source case. We conclude that timely access to routine screening and treatment for latent TB infection for immigrants is vital for disease elimination in Rhode Island.