Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 633(8030): 560-566, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39261726

RESUMO

Artificial Intelligence (AI) is the domain of large resource-intensive data centres that limit access to a small community of developers1,2. Neuromorphic hardware promises greatly improved space and energy efficiency for AI but is presently only capable of low-accuracy operations, such as inferencing in neural networks3-5. Core computing tasks of signal processing, neural network training and natural language processing demand far higher computing resolution, beyond that of individual neuromorphic circuit elements6-8. Here we introduce an analog molecular memristor based on a Ru-complex of an azo-aromatic ligand with 14-bit resolution. Precise kinetic control over a transition between two thermodynamically stable molecular electronic states facilitates 16,520 distinct analog conductance levels, which can be linearly and symmetrically updated or written individually in one time step, substantially simplifying the weight update procedure over existing neuromorphic platforms3. The circuit elements are unidirectional, facilitating a selector-less 64 × 64 crossbar-based dot-product engine that enables vector-matrix multiplication, including Fourier transform, in a single time step. We achieved more than 73 dB signal-to-noise-ratio, four orders of magnitude improvement over the state-of-the-art methods9-11, while consuming 460× less energy than digital computers12,13. Accelerators leveraging these molecular crossbars could transform neuromorphic computing, extending it beyond niche applications and augmenting the core of digital electronics from the cloud to the edge12,13.


Assuntos
Redes Neurais de Computação , Cinética , Inteligência Artificial , Razão Sinal-Ruído , Ligantes , Termodinâmica , Análise de Fourier , Processamento de Sinais Assistido por Computador/instrumentação
2.
Nature ; 597(7874): 51-56, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34471273

RESUMO

Profuse dendritic-synaptic interconnections among neurons in the neocortex embed intricate logic structures enabling sophisticated decision-making that vastly outperforms any artificial electronic analogues1-3. The physical complexity is far beyond existing circuit fabrication technologies: moreover, the network in a brain is dynamically reconfigurable, which provides flexibility and adaptability to changing environments4-6. In contrast, state-of-the-art semiconductor logic circuits are based on threshold switches that are hard-wired to perform predefined logic functions. To advance the performance of logic circuits, we are re-imagining fundamental electronic circuit elements by expressing complex logic in nanometre-scale material properties. Here we use voltage-driven conditional logic interconnectivity among five distinct molecular redox states of a metal-organic complex to embed a 'thicket' of decision trees (composed of multiple if-then-else conditional statements) having 71 nodes within a single memristor. The resultant current-voltage characteristic of this molecular memristor (a 'memory resistor', a globally passive resistive-switch circuit element that axiomatically complements the set of capacitor, inductor and resistor) exhibits eight recurrent and history-dependent non-volatile switching transitions between two conductance levels in a single sweep cycle. The identity of each molecular redox state was determined with in situ Raman spectroscopy and confirmed by quantum chemical calculations, revealing the electron transport mechanism. Using simple circuits of only these elements, we experimentally demonstrate dynamically reconfigurable, commutative and non-commutative stateful logic in multivariable decision trees that execute in a single time step and can, for example, be applied as local intelligence in edge computing7-9.

3.
Inorg Chem ; 57(19): 11995-12009, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30207466

RESUMO

In this work, the effect of the electronically different ancillary ligands on the overall properties of the RuIIL moiety (L = 2,6-bis(phenylazo)pyridine) in heteroleptic complexes of general formula [RuLQCl]0/+ was investigated. Four different ancillary ligands (Q) with different electronic effects were used to prepare the heteroleptic compounds from the precursor complex, [RuL(CH3CN)Cl2] (1); Q = pcp: 2-(4-chloro-phenylazo)pyridine (strong π-acceptor), [2]+; bpy: 2,2'-bipyridyl (moderate π-acceptor), [3]+; acac-: acetylacetonate (strong σ-donor), 4; and DTBCat2-: 3,5-di- tert-butyl catecholate (strong π-donor), 5. The complexes [2]+, [3]+, 4, and 5 were fully characterized and structurally identified. The electronic structures of these complexes along with their redox partners were elucidated by using a host of physical measurements: nuclear magnetic resonance, cyclic voltammetry, electronic paramagnetic resonance, UV-vis-NIR spectroscopy, and density functional theory. The studies revealed significant effects of the coligands on azo bond lengths of the RuL moiety and their redox behavior. Aerobic alcohol oxidation reactions using these Ru complexes as catalysts were scrutinized. It was found that the catalytic efficiency is primarily controlled by the electronic effect of the coligand. Accordingly, the complex [2]+ (containing a strong π-acceptor coligand, pcp) brings about oxidation efficiently, producing 86% of benzaldehyde. In comparison, however, the complexes 4 and 5 (containing electron donating coligand) furnished only 15-20% of benzaldehyde under identical reaction conditions. Investigations of the reaction mechanism suggest that an unstable Ru-H species is formed, which is transformed to a Ru-hydrazo intermediate by H-walking as reported by Hall et al. ( J. Am. Chem. Soc., 2015, 137, 12330). Aerial O2 regenerates the catalyst via oxidation of the hydrazo intermediate.

4.
Inorg Chem ; 56(9): 4966-4977, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28426213

RESUMO

In this work, ortho-C-N bond fusion reactions of aniline are followed by the use of two different ruthenium mediators. Reaction of aniline with [RuIII(terpy)Cl3] (terpy = 2,2':6',2″-terpyridine) resulted in a trans bis-aniline ruthenium(II) complex [1]+ which upon oxidation with H2O2 produced compound [2]+ of a bidentate ligand, N-phenyl-1,2-benzoquinonediimine, due to an oxidative ortho-C-N bond fusion reaction. Complex [1]+ and aniline (neat) at 185 °C produced a bis-chelated ruthenium complex (3). A previously reported complex [RuII(N-phenyl-1,2-benzoquinonediimine)(aniline)2(Cl)2] (5) undergoes similar oxidation by air at 185 °C to produce complex [3]. A separate chemical reaction between aniline and strongly oxidizing tetra-n-propylammonium perruthenate [(n-pr)4N]+[RuO4]- in air produced a ruthenium complex [4] of a N4-tetraamidophenylmacrocycle ligand via multiple ortho-C-N bond fusion reaction. Notably, the yield of this product is low (5%) at 100 °C but increases to 25% in refluxing aniline. All these complexes are characterized fully by their physicochemical characterizations and X-ray structure determination. From their structural parameters and other spectroscopic studies, complex [2]+ is assigned as [RuII(terpy)(N-phenyl-1,2-benzoquinonediimine)(Cl)]+ whereas complex [4] is described as a ruthenium(VI) complex comprised of a reduced deprotonated N-phenyl-1,2-diamidobenzene and N4-tetraamidophenylmacrocyclic ligand. Complex [2]+ exhibits one reversible oxidation at 1.32 V and one reversible reduction at -0.75 V vs Ag/AgCl reference electrode. EPR of the electrogenerated complexes has revealed that the oxidized complex is a ruthenium(III) complex with an axial EPR spectrum at gav= 2.06. The reduced complex [2], on the other hand, shows a single-line EPR signal at gav= 1.998. In contrast, complex [4] shows two successive one-electron oxidation waves at 0.5 and 0.8 V and an irreversible reduction wave at -0.9 V. EPR studies of the oxidized complexes [4]+ and [4]2+ reveal that oxidations are ligand centered. DFT calculations were employed to elucidate the electronic structures as well as the redox processes associated with the above complexes. Aerial ortho-C-N bond fusion reactions of aniline using two different mediators, viz. [RuIII(terpy)Cl3] and [(n-pr)4N]+[RuO4]-, have been followed. It is found that in the case of oxidizable Ru(III) mediator complex, C-N bond fusion is limited only to dimerization reaction whereas the high-valent Ru(VII) salt mediates multiple C-N bond fusion reactions leading to the formation of a novel tetradentate N4-tetraamidophenylmacrocyclic ligand. Valence ambiguity in the complexes of the resultant redox-active ligands is scrutinized.

5.
Inorg Chem ; 55(19): 9602-9610, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27646531

RESUMO

Design of an efficient new catalyst that can mimic the enzymatic pathway for catalytic dehydrogenation of liquid fuels like alcohols is described in this report. The catalyst is a nickel(II) complex of 2,6-bis(phenylazo)pyridine ligand (L), which possesses the above requisite with excellent catalytic efficiencies for controlled dehydrogenation of alcohols using ligand-based redox couple. Mechanistic studies supported by density functional theory calculations revealed that the catalytic cycle involves hydrogen atom transfer via quantum mechanical tunneling with significant kH/kD isotope effect of 12.2 ± 0.1 at 300 K. A hydrogenated intermediate compound, [NiIICl2(H2L)], is isolated and characterized. The results are promising in the context of design of cheap and efficient earth-abundant metal catalyst for alcohol oxidation and hydrogen storage.


Assuntos
Álcoois/química , Complexos de Coordenação/química , Aldeídos/síntese química , Compostos Azo/química , Catálise , Hidrogenação , Cetonas/síntese química , Ligantes , Modelos Químicos , Níquel/química , Oxirredução , Teoria Quântica
6.
Adv Mater ; 35(37): e2206128, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36314389

RESUMO

A breakthrough in in-memory computing technologies hinges on the development of appropriate material platforms that can overcome their existing limitations, such as larger than optimal footprint and multiple serial computational steps, with potential accumulation of errors. Using a molecular switching element with multiple non-monotonic and deterministic transitions, the device count and the number of computational steps can be substantially reduced. With molecular materials, however, the realization of a reliable and robust platform is an unattained goal for decades. Here, crossbar arrays with up to 64 molecular memristors are fabricated to experimentally demonstrate 8-bit serial and 4-bit parallel adders that operate for thousands of measurement cycles with an estimated error probability of 10-16 . For performance benchmarking, a 32-bit parallel adder is designed and simulated with 268 million inputs including contributions from the peripheral circuitry showing a 47× higher energy efficiency, 93× faster operation, and 9% of the footprint, leading to 4390 times improved energy-delay product compared to a special purpose complementary metal-oxide-semiconductor (CMOS)-based multicore adder.

7.
Adv Mater ; 32(42): e2004370, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32893411

RESUMO

One common challenge highlighted in almost every review article on organic resistive memory is the lack of areal switching uniformity. This, in fact, is a puzzle because a molecular switching mechanism should ideally be isotropic and produce homogeneous current switching free from electroforming. Such a demonstration, however, remains elusive to date. The reports attempting to characterize a nanoscopic picture of switching in molecular films show random current spikes, just opposite to the expectation. Here, this longstanding conundrum is resolved by demonstrating 100% spatially homogeneous current switching (driven by molecular redox) in memristors based on Ru-complexes of azo-aromatic ligands. Through a concurrent nanoscopic spatial mapping using conductive atomic force microscopy and in operando tip-enhanced Raman spectroscopy (both with resolution <7 nm), it is shown that molecular switching in the films is uniform from hundreds of micrometers down to the nanoscale and that conductance value exactly correlates with spectroscopically determined molecular redox states. This provides a deterministic molecular route to obtain spatially homogeneous, forming-free switching that can conceivably overcome the chronic problems of robustness, consistency, reproducibility, and scalability in organic memristors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA