RESUMO
Widespread use of plant protection agents in agriculture is a major cause of pollution. Apart from active ingredients, the environmental impact of auxiliary synthetic polymers should be minimized if they are highly persistent. An alternative to synthetic polymers is the use of natural polysaccharides, which are abundant and biodegradable. In this study, we explore pectin microgels functionalized with anchor peptides (P-MAPs) to be used as an alternative biobased pesticide delivery system. Using copper as the active ingredient, P-MAPs effectively prevented infection of grapevine plants with downy mildew under semi-field conditions on par with commercial copper pesticides. By using anchor peptides, the microgels tightly bind to the leaf surface, exhibiting excellent rain fastness and prolonged fungicidal activity. Finally, P-MAPs are shown to be easily degradable by enzymes found in nature, demonstrating their negligible long-term impact on the environment.
Assuntos
Microgéis , Peptídeos , Praguicidas , Microgéis/química , Peptídeos/química , Peptídeos/farmacologia , Praguicidas/química , Praguicidas/farmacologia , Vitis/química , Pectinas/química , Cobre/químicaRESUMO
For membrane-bound intracellular pathogens, the surrounding vacuole is the portal of communication with the host cell. The parasitophorous vacuole (PV) harboring intrahepatocytic Plasmodium parasites satisfies the parasites' needs of nutrition and protection from host defenses to allow the rapid parasite growth that occurs during the liver stage of infection. In this study, we visualized the PV membrane (PVM) and the associated tubovesicular network (TVN) through fluorescent tagging of two PVM-resident Plasmodium berghei proteins, UIS4 and IBIS1. This strategy revealed previously unrecognized dynamics with which these membranes extend throughout the host cell. We observed dynamic vesicles, elongated clusters of membranes and long tubules that rapidly extend and contract from the PVM in a microtubule-dependent manner. Live microscopy, correlative light-electron microscopy and fluorescent recovery after photobleaching enabled a detailed characterization of these membranous features, including velocities, the distribution of UIS4 and IBIS1, and the connectivity of PVM and TVN. Labeling of host cell compartments revealed association of late endosomes and lysosomes with the elongated membrane clusters. Moreover, the signature host autophagosome protein LC3 was recruited to the PVM and TVN and colocalized with UIS4. Together, our data demonstrate that the membranes surrounding intrahepatic Plasmodium are involved in active remodeling of host cells.
Assuntos
Fígado/parasitologia , Plasmodium/metabolismo , Animais , Membrana Celular/metabolismo , Interações Hospedeiro-Parasita , Plasmodium/patogenicidadeRESUMO
Previous works on grapevine-trunk diseases indicate that minimal or non-pruning of the grapevine under certain circumstances can significantly reduce the risk of symptom expression. Nevertheless, knowledge of the mechanisms behind these observations are limited. Therefore, it was the aim of this study to investigate in more detail the effect of pruning intensity on the grapevine trunk by means of trunk integrity and the fungal community in the wood tissue. Two German vineyards partially trained in vertical-shoot position and semi-minimally pruned hedges were chosen for this survey due to the accessibility of multi-annual esca-monitoring data. The results revealed that only in one of the two vineyards was the incidence of external esca symptoms significantly reduced over a period of five years (2017-2021) by minimal pruning, which was up to 73.7% compared to intensive pruning. In both vineyards, the trunks of intensively pruned vines not only had more pruning wounds on the trunk (by 86.0% and 72.9%, respectively) than minimally pruned vines, but also exhibited a larger (by 19.3% and 14.7%, respectively) circumference of the trunk head. In addition, the percentage of white rot and necrosis in the trunks of esca-positive and esca-negative vines was analyzed and compared between the two pruning intensities; hereby, significant differences were only found for esca-negative 'Dornfelder' vines, in which the proportion of necrosis was higher for intensively pruned vines (23.0%) than for minimally pruned vines (11.5%). The fungal communities of the differently pruned vine trunks were mainly dominated by four genera, which are also associated with GTDs: Diplodia, Eutypa, Fomitiporia and Phaeomoniella. All in all, the fungal diversity and community composition did not differ between minimally and intensively pruned, esca-positive vines.
RESUMO
In vertebrates, several forms of memory-relevant synaptic plasticity involve postsynaptic rearrangements of glutamate receptors. In contrast, previous work indicates that Drosophila and other invertebrates store memories using presynaptic plasticity of cholinergic synapses. Here, we provide evidence for postsynaptic plasticity at cholinergic output synapses from the Drosophila mushroom bodies (MBs). We find that the nicotinic acetylcholine receptor (nAChR) subunit α5 is required within specific MB output neurons for appetitive memory induction but is dispensable for aversive memories. In addition, nAChR α2 subunits mediate memory expression and likely function downstream of α5 and the postsynaptic scaffold protein discs large (Dlg). We show that postsynaptic plasticity traces can be induced independently of the presynapse, and that in vivo dynamics of α2 nAChR subunits are changed both in the context of associative and non-associative (familiarity) memory formation, underlying different plasticity rules. Therefore, regardless of neurotransmitter identity, key principles of postsynaptic plasticity support memory storage across phyla.