Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 175(7): 1946-1957.e13, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30415839

RESUMO

Directed evolution is a powerful approach for engineering biomolecules and understanding adaptation. However, experimental strategies for directed evolution are notoriously labor intensive and low throughput, limiting access to demanding functions, multiple functions in parallel, and the study of molecular evolution in replicate. We report OrthoRep, an orthogonal DNA polymerase-plasmid pair in yeast that stably mutates ∼100,000-fold faster than the host genome in vivo, exceeding the error threshold of genomic replication that causes single-generation extinction. User-defined genes in OrthoRep continuously and rapidly evolve through serial passaging, a highly straightforward and scalable process. Using OrthoRep, we evolved drug-resistant malarial dihydrofolate reductases (DHFRs) in 90 independent replicates. We uncovered a more complex fitness landscape than previously realized, including common adaptive trajectories constrained by epistasis, rare outcomes that avoid a frequent early adaptive mutation, and a suboptimal fitness peak that occasionally traps evolving populations. OrthoRep enables a new paradigm of routine, high-throughput evolution of biomolecular and cellular function.


Assuntos
Adaptação Fisiológica/genética , Genoma Fúngico , Modelos Genéticos , Taxa de Mutação , Saccharomyces cerevisiae/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Nat Chem Biol ; 10(3): 175-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24487693

RESUMO

An extranuclear replication system, consisting of an orthogonal DNA plasmid-DNA polymerase pair, was developed in Saccharomyces cerevisiae. Engineered error-prone DNA polymerases showed complete mutational targeting in vivo: per-base mutation rates on the plasmid were increased substantially and remained stable with no increase in genomic rates. Orthogonal replication serves as a platform for in vivo continuous evolution and as a system whose replicative properties can be manipulated independently of the host's.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Saccharomyces cerevisiae/genética , Mutação , Plasmídeos/genética , Engenharia de Proteínas , Saccharomyces cerevisiae/metabolismo
3.
Chembiochem ; 16(8): 1149-51, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25917937

RESUMO

It's only unnatural: Reengineered genetic codes can achieve biocontainment by specifying different meanings for protein sequences in modified versus natural organisms; the synthetic bacterium discussed here is dependent on unnatural amino acids because its reengineered genetic code specifies unnatural amino acids in essential genes.


Assuntos
Derramamento de Material Biológico/prevenção & controle , Código Genético/genética , Engenharia Genética/métodos , Segurança , Engenharia Genética/efeitos adversos , Microbiologia
4.
ACS Synth Biol ; 9(6): 1270-1276, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32374988

RESUMO

We present automated continuous evolution (ACE), a platform for the hands-free directed evolution of biomolecules. ACE pairs OrthoRep, a genetic system for continuous targeted mutagenesis of user-selected genes in vivo, with eVOLVER, a scalable and automated continuous culture device for precise, multiparameter regulation of growth conditions. By implementing real-time feedback-controlled tuning of selection stringency with eVOLVER, genes of interest encoded on OrthoRep autonomously traversed multimutation adaptive pathways to reach desired functions, including drug resistance and improved enzyme activity. The durability, scalability, and speed of biomolecular evolution with ACE should be broadly applicable to protein engineering as well as prospective studies on how selection parameters and schedules shape adaptation.


Assuntos
Evolução Molecular Direcionada/métodos , Saccharomyces cerevisiae/metabolismo , Algoritmos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutagênese , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Thermotoga maritima/metabolismo
5.
ACS Synth Biol ; 7(12): 2930-2934, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30408954

RESUMO

We recently developed an orthogonal DNA replication (OrthoRep) system capable of driving the rapid continuous evolution of genes in vivo. However, OrthoRep uses a special transcription system, the components of which (e.g., promoters) have previously limited the strength with which OrthoRep-encoded genes can be expressed. Here, we report a collection of synthetic and evolved OrthoRep expression parts that allow OrthoRep-encoded genes to span expression levels matching those of endogenous Saccharomyces cerevisiae genes. Specifically, we found that various promoter mutations as well as a genetically encoded poly(A) tail enable us to tune the expression level of OrthoRep-encoded genes over a large range and up to levels 43-fold higher than were previously attained, reaching at least ∼40% of the strength of the genomic TDH3 promoter. We further show that expression level gains using our new parts are stable over passaging and consistent across multiple genes and OrthoRep systems of different mutation rates. This new set of expression parts further expands OrthoRep's applicability to the continuous in vivo evolution of proteins and pathways.


Assuntos
Replicação do DNA/fisiologia , Saccharomyces cerevisiae/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Evolução Molecular , Regulação Fúngica da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Mutagênese , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
ACS Synth Biol ; 7(7): 1722-1729, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29969238

RESUMO

The yeast cytoplasmically localized pGKL1/TP-DNAP1 plasmid/DNA polymerase pair forms an orthogonal DNA replication system whose mutation rate can be drastically increased without influencing genomic replication, thereby supporting in vivo continuous evolution. Here, we report that the pGKL2/TP-DNAP2 plasmid/DNA polymerase pair forms a second orthogonal replication system. We show that custom genes can be encoded and expressed from pGKL2, that error-prone TP-DNAP2s can be engineered, and that pGKL2 replication by TP-DNAP2 is both orthogonal to genomic replication in Saccharomyces cerevisiae and mutually orthogonal with pGKL1 replication by TP-DNAP1. This demonstration of two mutually orthogonal DNA replication systems with tunable error rates and properties should enable new applications in cell-based continuous evolution, genetic recording, and synthetic biology at large.


Assuntos
Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/genética , Engenharia Metabólica/métodos , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA