Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cereb Cortex ; 33(8): 4752-4760, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36178137

RESUMO

The corpus callosum (CC) is the largest white matter structure and the primary pathway for interhemispheric brain communication. Investigating callosal connectivity is crucial to unraveling the brain's anatomical and functional organization in health and disease. Classical anatomical studies have characterized the bulk of callosal axonal fibers as connecting primarily homotopic cortical areas. Whenever detected, heterotopic callosal fibers were ascribed to altered sprouting and pruning mechanisms in neurodevelopmental diseases such as CC dysgenesis (CCD). We hypothesized that these heterotopic connections had been grossly underestimated due to their complex nature and methodological limitations. We used the Allen Mouse Brain Connectivity Atlas and high-resolution diffusion-weighted imaging to identify and quantify homotopic and heterotopic callosal connections in mice, marmosets, and humans. In all 3 species, we show that ~75% of interhemispheric callosal connections are heterotopic and comprise the central core of the CC, whereas the homotopic fibers lay along its periphery. We also demonstrate that heterotopic connections have an essential role in determining the global properties of brain networks. These findings reshape our view of the corpus callosum's role as the primary hub for interhemispheric brain communication, directly impacting multiple neuroscience fields investigating cortical connectivity, neurodevelopment, and neurodevelopmental disorders.


Assuntos
Encéfalo , Corpo Caloso , Humanos , Camundongos , Animais , Vias Neurais/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Corpo Caloso/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Agenesia do Corpo Caloso/diagnóstico por imagem , Mamíferos , Callithrix
2.
J Neurochem ; 161(4): 320-334, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34940974

RESUMO

Neocortex development comprises of a complex series of time- and space-specific processes to generate the typical interconnected six-layered architecture of adult mammals. Axon growth is required for the proper establishment of cortical circuits. Malformations in axonal growth and pathfinding might lead to severe neuropathologies, such as corpus callosum dysgenesis. Cenpj, a microcephaly gene, encodes a scaffold protein that regulates centrosome biogenesis and microtubule stabilization. During corticogenesis, Cenpj regulates progenitor division and neuronal migration. Since microtubule stabilization is crucial for axon extension, we investigated the role of Cenpj in axon growth during cortical development in a mouse model. Through loss- and gain-of-function assays ex vivo and in utero, we quantified callosal axonal length, branching, and growth cone size compared to controls. We observed that silencing Cenpj results in an increased axonal length. Ex vivo, we assessed the number of branches, the area of growth cones and the stability of microtubules. In silenced Cenpj axons, there were more branches, larger growth cone area, and more stable microtubules. Rescue experiments confirmed that neurons present axonal length comparable to controls. Here we propose that Cenpj regulates axon growth by destabilizing microtubules during cortical development. Finally, our findings suggest that Cenpj might be a novel target for axonal regeneration.


Assuntos
Microcefalia , Proteínas Associadas aos Microtúbulos , Animais , Axônios/metabolismo , Células Cultivadas , Cones de Crescimento/metabolismo , Mamíferos/metabolismo , Camundongos , Microcefalia/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo
3.
Hippocampus ; 29(8): 755-761, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30767318

RESUMO

Prolonged increases in excitation can trigger cell-wide homeostatic responses in neurons, altering membrane channels, promoting morphological changes, and ultimately reducing synaptic weights. However, how synaptic downscaling interacts with classical forms of Hebbian plasticity is still unclear. In this study, we investigated whether chronic optogenetic stimulation of hippocampus CA1 pyramidal neurons in freely moving mice could (a) cause morphological changes reminiscent of homeostatic scaling, (b) modulate synaptic currents that might compensate for chronic excitation, and (c) lead to alterations in Hebbian plasticity. After 24 hr of stimulation with 15-ms blue light pulses every 90 s, dendritic spine density and area were reduced in the CA1 region of mice expressing channelrhodopsin-2 (ChR2) when compared to controls. This protocol also reduced the amplitude of mEPSCs for both the AMPA and NMDA components in ex vivo slices obtained from ChR2-expressing mice immediately after the end of stimulation. Finally, chronic stimulation impaired the induction of LTP and facilitated that of LTD in these slices. Our results indicate that neuronal responses to prolonged network excitation can modulate subsequent Hebbian plasticity in the hippocampus.


Assuntos
Potenciais de Ação/fisiologia , Espinhas Dendríticas/fisiologia , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Camundongos , Neurônios/fisiologia , Optogenética , Sinapses/fisiologia
4.
Epigenetics Chromatin ; 16(1): 4, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36698218

RESUMO

BACKGROUND: Cellular differentiation is marked by temporally and spatially coordinated gene expression regulated at multiple levels. DNA methylation represents a universal mechanism to control chromatin organization and its accessibility. Cytosine methylation of CpG dinucleotides regulates binding of methylation-sensitive DNA-binding transcription factors within regulatory regions of transcription, including promoters and distal enhancers. Ocular lens differentiation represents an advantageous model system to examine these processes as lens comprises only two cell types, the proliferating lens epithelium and postmitotic lens fiber cells all originating from the epithelium. RESULTS: Using whole genome bisulfite sequencing (WGBS) and microdissected lenses, we investigated dynamics of DNA methylation and chromatin changes during mouse lens fiber and epithelium differentiation between embryos (E14.5) and newborns (P0.5). Histone H3.3 variant chromatin landscapes were also generated for both P0.5 lens epithelium and fibers by chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq). Tissue-specific features of DNA methylation patterns are demonstrated via comparative studies with embryonic stem (ES) cells and neural progenitor cells (NPCs) at Nanog, Pou5f1, Sox2, Pax6 and Six3 loci. Comparisons with ATAC-seq and RNA-seq data demonstrate that reduced methylation is associated with increased expression of fiber cell abundant genes, including crystallins, intermediate filament (Bfsp1 and Bfsp2) and gap junction proteins (Gja3 and Gja8), marked by high levels of histone H3.3 within their transcribed regions. Interestingly, Pax6-binding sites exhibited predominantly DNA hypomethylation in lens chromatin. In vitro binding of Pax6 proteins showed Pax6's ability to interact with sites containing one or two methylated CpG dinucleotides. CONCLUSIONS: Our study has generated the first data on methylation changes between two different stages of mammalian lens development and linked these data with chromatin accessibility maps, presence of histone H3.3 and gene expression. Reduced DNA methylation correlates with expression of important genes involved in lens morphogenesis and lens fiber cell differentiation.


Assuntos
Cromatina , Histonas , Cristalino , Animais , Camundongos , Diferenciação Celular/genética , DNA/metabolismo , Metilação de DNA , Expressão Gênica , Histonas/metabolismo , Cristalino/crescimento & desenvolvimento
5.
JAMA Netw Open ; 6(8): e2331410, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37647065

RESUMO

Importance: Preprints have been increasingly used in biomedical science, and a key feature of many platforms is public commenting. The content of these comments, however, has not been well studied, and it is unclear whether they resemble those found in journal peer review. Objective: To describe the content of comments on the bioRxiv and medRxiv preprint platforms. Design, Setting, and Participants: In this cross-sectional study, preprints posted on the bioRxiv and medRxiv platforms in 2020 were accessed through each platform's application programming interface on March 29, 2021, and a random sample of preprints containing between 1 and 20 comments was evaluated independently by 3 evaluators using an instrument to assess their features and general content. Main Outcome and Measures: The numbers and percentages of comments from authors or nonauthors were assessed, and the comments from nonauthors were assessed for content. These nonauthor comments were assessed to determine whether they included compliments, criticisms, corrections, suggestions, or questions, as well as their topics (eg, relevance, interpretation, and methods). Nonauthor comments were also analyzed to determine whether they included references, provided a summary of the findings, or questioned the preprint's conclusions. Results: Of 52 736 preprints, 3850 (7.3%) received at least 1 comment (mean [SD] follow-up, 7.5 [3.6] months), and the 1921 assessed comments (from 1037 preprints) had a median length of 43 words (range, 1-3172 words). The criticisms, corrections, or suggestions present in 694 of 1125 comments (61.7%) were the most prevalent content, followed by compliments (n = 428 [38.0%]) and questions (n = 393 [35.0%]). Criticisms usually regarded interpretation (n = 286), methodological design (n = 267), and data collection (n = 238), while compliments were mainly about relevance (n = 111) and implications (n = 72). Conclusions and Relevance: In this cross-sectional study of preprint comments, topics commonly associated with journal peer review were frequent. However, only a small percentage of preprints posted on the bioRxiv and medRxiv platforms in 2020 received comments on these platforms. A clearer taxonomy of peer review roles would help to describe whether postpublication peer review fulfills them.


Assuntos
Revisão por Pares , Projetos de Pesquisa , Humanos , Estudos Transversais , Coleta de Dados , Software
6.
Neural Regen Res ; 17(1): 20-24, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34100421

RESUMO

Mechanisms of homeostatic plasticity promote compensatory changes of cellular excitability in response to chronic changes in the network activity. This type of plasticity is essential for the maintenance of brain circuits and is involved in the regulation of neural regeneration and the progress of neurodegenerative disorders. One of the most studied homeostatic processes is synaptic scaling, where global synaptic adjustments take place to restore the neuronal firing rate to a physiological range by the modulation of synaptic receptors, neurotransmitters, and morphology. However, despite the comprehensive literature on the electrophysiological properties of homeostatic scaling, less is known about the structural adjustments that occur in the synapses and dendritic tree. In this study, we performed a meta-analysis of articles investigating the effects of chronic network excitation (synaptic downscaling) or inhibition (synaptic upscaling) on the dendritic spine density of neurons. Our results indicate that spine density is consistently reduced after protocols that induce synaptic scaling, independent of the intervention type. Then, we discuss the implication of our findings to the current knowledge on the morphological changes induced by homeostatic plasticity.

7.
Neuroscience ; 477: 14-24, 2021 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-34601063

RESUMO

The corpus callosum (CC) is a major interhemispheric commissure of placental mammals. Early steps of CC formation rely on guidance strategies, such as axonal branching and collateralization. Here we analyze the time-course dynamics of axonal bifurcation during typical cortical development or in a CC dysgenesis mouse model. We use Swiss mice as a typical CC mouse model and find that axonal bifurcation rates rise in the cerebral cortex from embryonic day (E)17 and are reduced by postnatal day (P)9. Since callosal neurons populate deep and superficial cortical layers, we compare the axon bifurcation ratio between those neurons by electroporating ex vivo brains at E13 and E15, using eGFP reporter to label the newborn neurons on organotypic slices. Our results suggest that deep layer neurons bifurcate 32% more than superficial ones. To investigate axonal bifurcation in CC dysgenesis, we use BALB/c mice as a spontaneous CC dysgenesis model. BALB/c mice present a typical layer distribution of SATB2 callosal cells, despite the occurrence of callosal anomalies. However, using anterograde DiI tracing, we find that BALB/c mice display increased rates of axonal bifurcations during early and late cortical development in the medial frontal cortex. Midline guidepost cells adjacent to the medial frontal cortex are significant reduced in the CC dysgenesis mouse model. Altogether these data suggest that callosal collateral axonal exuberance is maintained in the absence of midline guidepost signaling and might facilitate aberrant connections in the CC dysgenesis mouse model.


Assuntos
Córtex Cerebral , Placenta , Animais , Axônios , Corpo Caloso , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Gravidez
8.
Front Cell Neurosci ; 14: 164, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612512

RESUMO

The maintenance of the excitability of neurons and circuits is a fundamental process for healthy brain functions. One of the main homeostatic mechanisms responsible for such regulation is synaptic scaling. While this type of plasticity is well-characterized through a robust body of literature, there are no systematic evaluations of the methodological and reporting features from these studies. Our review yielded 168 articles directly investigating synaptic scaling mechanisms, which display relatively high impact, with a median impact factor of 7.76 for the publishing journals. Our methodological analysis identified that 86% of the articles made use of inhibitory interventions to induce synaptic scaling, while only 41% of those studies contain excitatory manipulations. To verify the effects of synaptic scaling, the most assessed outcome was miniature excitatory postsynaptic current (mEPSC) recordings, performed in 71% of the articles. We could also observe that the field is mostly focused on mechanistic studies of the synaptic scaling pathways (70%), rather than the interaction with other types of plasticity, such as Hebbian processes (4%). We found that more than half of the articles failed to describe simple features, such as regulatory compliance statements, ethics committee approval, or statements of conflict of interests. In light of these results, we discuss the strengths and pitfalls existing in synaptic scaling literature.

9.
Res Integr Peer Rev ; 5(1): 16, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33292815

RESUMO

BACKGROUND: Preprint usage is growing rapidly in the life sciences; however, questions remain on the relative quality of preprints when compared to published articles. An objective dimension of quality that is readily measurable is completeness of reporting, as transparency can improve the reader's ability to independently interpret data and reproduce findings. METHODS: In this observational study, we initially compared independent samples of articles published in bioRxiv and in PubMed-indexed journals in 2016 using a quality of reporting questionnaire. After that, we performed paired comparisons between preprints from bioRxiv to their own peer-reviewed versions in journals. RESULTS: Peer-reviewed articles had, on average, higher quality of reporting than preprints, although the difference was small, with absolute differences of 5.0% [95% CI 1.4, 8.6] and 4.7% [95% CI 2.4, 7.0] of reported items in the independent samples and paired sample comparison, respectively. There were larger differences favoring peer-reviewed articles in subjective ratings of how clearly titles and abstracts presented the main findings and how easy it was to locate relevant reporting information. Changes in reporting from preprints to peer-reviewed versions did not correlate with the impact factor of the publication venue or with the time lag from bioRxiv to journal publication. CONCLUSIONS: Our results suggest that, on average, publication in a peer-reviewed journal is associated with improvement in quality of reporting. They also show that quality of reporting in preprints in the life sciences is within a similar range as that of peer-reviewed articles, albeit slightly lower on average, supporting the idea that preprints should be considered valid scientific contributions.

10.
J Neurosci Methods ; 326: 108392, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31394117

RESUMO

BACKGROUND: The Isotropic Fractionator (IF) is a method to determine the cellular composition of nervous tissue. It has been mostly applied to assess variation across species, where differences are expected to be large enough not to be masked by methodological error. However, understanding the sources of variation in the method is important if the goal is to detect smaller differences, for example, in same-species comparisons. Comparisons between different mice strains suggest that the IF is consistent enough to detect these differences. Nevertheless, the reliability of the method has not yet been examined directly. METHOD: In this study, we evaluate the reliability of the method for the determination of cellular and neuronal numbers of Swiss mice. We performed repeated cell counts of the same material by different experimenters to quantify different sources of variation. RESULTS: In total cell counts, we observed that for the cerebral cortex most of the variance was at the counter level. For the cerebellum, most of the variance is attributed to the sample itself. As for neurons, random error along with the immunostaining correspond to most of the variation, both in the cerebral cortex and in the cerebellum. Test-retest reliability coefficients were relatively high, especially for cell counts. CONCLUSIONS: Although biases between counters and random variation in staining could be problematic when aggregating data from different sources, we offer practical suggestions to improve the reliability of the method. While small, this study is a most needed step towards more precise measurement of the brain's cellular composition.


Assuntos
Contagem de Células , Cerebelo/citologia , Córtex Cerebral/citologia , Neurônios/citologia , Neurociências , Animais , Contagem de Células/métodos , Contagem de Células/normas , Camundongos , Neurociências/métodos , Neurociências/normas , Reprodutibilidade dos Testes
11.
Mol Neurobiol ; 55(11): 8668-8679, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29582399

RESUMO

Perinatal asphyxia remains a significant cause of neonatal mortality and is associated with long-term neurodegenerative disorders. In the present study, we evaluated cellular and subcellular damages to brain development in a model of mild perinatal asphyxia. Survival rate in the experimental group was 67%. One hour after the insult, intraperitoneally injected Evans blue could be detected in the fetuses' brains, indicating disruption of the blood-brain barrier. Although brain mass and absolute cell numbers (neurons and non-neurons) were not reduced after perinatal asphyxia immediately and in late brain development, subcellular alterations were detected. Cortical oxygen consumption increased immediately after asphyxia, and remained high up to 7 days, returning to normal levels after 14 days. We observed an increased resistance to mitochondrial membrane permeability transition, and calcium buffering capacity in asphyxiated animals from birth to 14 days after the insult. In contrast to ex vivo data, mitochondrial oxygen consumption in primary cell cultures of neurons and astrocytes was not altered after 1% hypoxia. Taken together, our results demonstrate that although newborns were viable and apparently healthy, brain development is subcellularly altered by perinatal asphyxia. Our findings place the neonate brain mitochondria as a potential target for therapeutic protective interventions.


Assuntos
Asfixia/patologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Mitocôndrias/patologia , Animais , Animais Recém-Nascidos , Asfixia/sangue , Astrócitos/metabolismo , Astrócitos/patologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/metabolismo , Hipóxia Celular , Respiração Celular , Células Cultivadas , Citrato (si)-Sintase/metabolismo , Metabolismo Energético , Feminino , Lactatos/sangue , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Tamanho do Órgão , Permeabilidade , Ratos Wistar , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA