Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Molecules ; 27(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35630557

RESUMO

Stingless bee honey has a distinctive flavor and sour taste compared to Apis mellifera honey. Currently, interest in farming stingless bees is growing among rural residents to meet the high demand for raw honey and honey-based products. Several studies on stingless bee honey have revealed various therapeutic properties for wound healing applications. These include antioxidant, antibacterial, anti-inflammatory, and moisturizing properties related to wound healing. The development of stingless bee honey for wound healing applications, such as incorporation into hydrogels, has attracted researchers worldwide. As a result, the effectiveness of stingless bee honey against wound infections can be improved in the future to optimize healing rates. This paper reviewed the physicochemical and therapeutic properties of stingless bee honey and its efficacy in treating wound infection, as well as the incorporation of stingless bee honey into hydrogels for optimized wound dressing.


Assuntos
Mel , Animais , Anti-Inflamatórios , Antioxidantes , Abelhas , Hidrogéis , Cicatrização
2.
Molecules ; 26(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34641480

RESUMO

The present research is based on the fabrication preparation of CS/PVA/GG blended hydrogel with nontoxic tetra orthosilicate (TEOS) for sustained paracetamol release. Different TEOS percentages were used because of their nontoxic behavior to study newly designed hydrogels' crosslinking and physicochemical properties. These hydrogels were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and wetting to determine the functional, surface morphology, hydrophilic, or hydrophobic properties. The swelling analysis in different media, degradation in PBS, and drug release kinetics were conducted to observe their response against corresponding media. The FTIR analysis confirmed the components added and crosslinking between them, and surface morphology confirmed different surface and wetting behavior due to different crosslinking. In various solvents, including water, buffer, and electrolyte solutions, the swelling behaviour of hydrogel was investigated and observed that TEOS amount caused less hydrogel swelling. In acidic pH, hydrogels swell the most, while they swell the least at pH 7 or higher. These hydrogels are pH-sensitive and appropriate for controlled drug release. These hydrogels demonstrated that, as the ionic concentration was increased, swelling decreased due to decreased osmotic pressure in various electrolyte solutions. The antimicrobial analysis revealed that these hydrogels are highly antibacterial against Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram negative (Pseudomonas aeruginosa and Escherichia coli) bacterial strains. The drug release mechanism was 98% in phosphate buffer saline (PBS) media at pH 7.4 in 140 min. To analyze drug release behaviour, the drug release kinetics was assessed against different mathematical models (such as zero and first order, Higuchi, Baker-Lonsdale, Hixson, and Peppas). It was found that hydrogel (CPG2) follows the Peppas model with the highest value of regression (R2 = 0.98509). Hence, from the results, these hydrogels could be a potential biomaterial for wound dressing in biomedical applications.


Assuntos
Antibacterianos/administração & dosagem , Bactérias/efeitos dos fármacos , Quitosana/química , Galactanos/química , Hidrogéis/administração & dosagem , Mananas/química , Gomas Vegetais/química , Álcool de Polivinil/química , Cicatrização/efeitos dos fármacos , Antibacterianos/química , Bandagens , Liberação Controlada de Fármacos , Hidrogéis/química
3.
Environ Sci Pollut Res Int ; 31(35): 47475-47504, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39017873

RESUMO

The production of renewable materials from alternative sources is becoming increasingly important to reduce the detrimental environmental effects of their non-renewable counterparts and natural resources, while making them more economical and sustainable. Chemical surfactants, which are highly toxic and non-biodegradable, are used in a wide range of industrial and environmental applications harming humans, animals, plants, and other entities. Chemical surfactants can be substituted with biosurfactants (BS), which are produced by microorganisms like bacteria, fungi, and yeast. They have excellent emulsifying, foaming, and dispersing properties, as well as excellent biodegradability, lower toxicity, and the ability to remain stable under severe conditions, making them useful for a variety of industrial and environmental applications. Despite these advantages, BS derived from conventional resources and precursors (such as edible oils and carbohydrates) are expensive, limiting large-scale production of BS. In addition, the use of unconventional substrates such as agro-industrial wastes lowers the BS productivity and drives up production costs. However, overcoming the barriers to commercial-scale production is critical to the widespread adoption of these products. Overcoming these challenges would not only promote the use of environmentally friendly surfactants but also contribute to sustainable waste management and reduce dependence on non-renewable resources. This study explores the efficient use of wastes and other low-cost substrates to produce glycolipids BS, identifies efficient substrates for commercial production, and recommends strategies to improve productivity and use BS in environmental remediation.


Assuntos
Recuperação e Remediação Ambiental , Glicolipídeos , Tensoativos , Tensoativos/química , Recuperação e Remediação Ambiental/métodos , Biodegradação Ambiental
4.
Int J Biol Macromol ; 253(Pt 5): 127169, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37783243

RESUMO

The development of advanced multifunctional wound dressings remains a major challenge. Herein, a novel multilayer (ML) electrospun nanofibers (NFs) wound dressing based on diethylenetriamine (DETA) functionalized polyacrylonitrile (PAN), TiO2 nanoparticles (NPs) coating (Ct), and bioderived gelatin (Gel) was developed for potential applications in wound healing. The ML PAN-DETA-Ct-Gel membrane was developed by combining electrospinning, chemical functionalization, synthesis, and electrospray techniques, using a layer-by-layer method. The ML PAN-DETA-Ct-Gel membrane is comprised of an outer layer of PAN-DETA as a barrier to external microorganisms and structural support, an interlayer TiO2 NPs (Ct) as antibacterial function, and a contact layer (Gel) to improve biocompatibility and cell viability. The NFs membranes were characterized by scanning electron microscopy (SEM), surface profilometry, BET analysis, and water contact angle techniques to investigate their morphology, surface roughness, porosity, and wettability. The ML PAN-DETA-Ct-Gel wound dressing exhibited good surface roughness, porosity, and better wettability. Cell morphology, proliferation, and viability were determined using fibroblasts (3T3), and antibacterial assays were performed against six pathogens. The ML PAN-DETA-Ct-Gel NFs membrane showed good cell morphology, proliferation, viability, and antibacterial activity compared with other membranes. This new class of ML NFs membranes offers a multifunctional architecture with adequate biocompatibility, cell viability, and antibacterial activity.


Assuntos
Gelatina , Nanofibras , Gelatina/química , Nanofibras/química , Aminas , DEET , Antibacterianos/química , Bandagens
5.
Biomolecules ; 13(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36671484

RESUMO

The global outbreak of COVID-19 possesses serious challenges and adverse impacts for patients with progression of chronic liver disease and has become a major threat to public health. COVID-19 patients have a high risk of lung injury and multiorgan dysfunction that remains a major challenge to hepatology. COVID-19 patients and those with liver injury exhibit clinical manifestations, including elevation in ALT, AST, GGT, bilirubin, TNF-α, and IL-6 and reduction in the levels of CD4 and CD8. Liver injury in COVID-19 patients is induced through multiple factors, including a direct attack of SARS-CoV-2 on liver hepatocytes, hypoxia reperfusion dysfunction, cytokine release syndrome, drug-induced hepatotoxicity caused by lopinavir and ritonavir, immune-mediated inflammation, renin-angiotensin system, and coagulopathy. Cellular and molecular mechanisms underlying liver dysfunction are not fully understood in severe COVID-19 attacks. High mortality and the development of chronic liver diseases such as cirrhosis, alcoholic liver disease, autoimmune hepatitis, nonalcoholic fatty liver disease, and hepatocellular carcinoma are also associated with patients with liver damage. COVID-19 patients with preexisting or developing liver disease should be managed. They often need hospitalization and medication, especially in conjunction with liver transplants. In the present review, we highlight the attack of SARS-CoV-2 on liver hepatocytes by exploring the cellular and molecular events underlying the pathophysiological mechanisms in COVID-19 patients with liver injury. We also discuss the development of chronic liver diseases during the progression of SARS-CoV-2 replication. Lastly, we explore management principles in COVID-19 patients with liver injury and liver transplantation.


Assuntos
COVID-19 , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , COVID-19/complicações , SARS-CoV-2
6.
Life Sci ; 316: 121409, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36681183

RESUMO

Chimeric antigen receptor (CAR) T therapy has shown remarkable success in discovering novel CAR-T cell products for treating malignancies. Despite of successful results from clinical trials, CAR-T cell therapy is ineffective for long-term disease progression. Numerous challenges of CAR-T cell immunotherapy such as cell dysfunction, cytokine-related toxicities, TGF-ß resistance, GvHD risks, antigen escape, restricted trafficking, and tumor cell infiltration still exist that hamper the safety and efficacy of CAR-T cells for malignancies. The accumulated data revealed that these challenges could be overcome with the advanced CRISPR genome editing technology, which is the most promising tool to knockout TRAC and HLA genes, inhibiting the effects of dominant negative receptors (PD-1, TGF-ß, and B2M), lowering the risks of cytokine release syndrome (CRS), and regulating CAR-T cell function in the tumor microenvironment (TME). CRISPR technology employs DSB-free genome editing methods that robustly allow efficient and controllable genetic modification. The present review explored the innovative aspects of CRISPR/Cas9 technology for developing next-generation/universal allogeneic CAR-T cells. The present manuscript addressed the ongoing status of clinical trials of CRISPR/Cas9-engineered CAR-T cells against cancer and pointed out the off-target effects associated with CRISPR/Cas9 genome editing. It is concluded that CAR-T cells modified by CRISPR/Cas9 significantly improved antitumor efficacy in a cost-effective manner that provides opportunities for novel cancer immunotherapies.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Sistemas CRISPR-Cas/genética , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Linfócitos T , Microambiente Tumoral
7.
Front Bioeng Biotechnol ; 10: 865059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573248

RESUMO

Wound healing is an important physiological process involving a series of cellular and molecular developments. A multifunctional hydrogel that prevents infection and promotes wound healing has great significance for wound healing applications in biomedical engineering. We have functionalized arabinoxylan and graphene oxide (GO) using the hydrothermal method, through cross-linking GO-arabinoxylan and polyvinyl alcohol (PVA) with tetraethyl orthosilicate (TEOS) to get multifunctional composite hydrogels. These composite hydrogels were characterized by FTIR, SEM, water contact angle, and mechanical testing to determine structural, morphological, wetting, and mechanical behavior, respectively. Swelling and biodegradation were also conducted in different media. The enhanced antibacterial activities were observed against different bacterial strains (E. coli, S. aureus, and P. aeruginosa); anticancer activities and biocompatibility assays were found effective against U-87 and MC3T3-E1 cell lines due to the synergic effect of hydrogels. In vivo activities were conducted using a mouse full-thickness skin model, and accelerated wound healing was found without any major inflammation within 7 days with improved vascularization. From the results, these composite hydrogels might be potential wound dressing materials for biomedical applications.

8.
J Biomater Sci Polym Ed ; 33(11): 1349-1368, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35348037

RESUMO

Tissue engineering is a cutting-edge approach for using advanced biomaterials to treat defective bone to get desired clinical results. In bone tissue engineering, the scaffolds must have the desired physicochemical and biomechanical natural properties in order to regenerate complicated defective bone. For the first time, polymeric nanocomposite material was developed using cellulose and co-dispersed nanosystem (Fe3O4/GO) by free radical polymerization to fabricate porous polymeric scaffolds via freeze drying. Various characterizations techniques, such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM)/energy dispersive X-ray (EDX), and universal testing machine (UTM) were used to investigate structural, morphological, and mechanical properties. Swelling, biodegradation, and wetting analysis were also performed to evaluate their physicochemical behavior. Intercalation of Fe3O4 nanoparticles into GO-sheets promoted their dispersion into the polymeric matrix. All porous scaffolds possessed a well-interconnected porous structure, while the synergistic effect of Fe3O4/GO reinforces the mechanical strength of porous scaffolds. The compressive strength and Young's modulus were increased by increasing Fe3O4 amount, and maximum mechanical strength was found in HFG-4 and least in HFG-1. However, these porous scaffolds have different swelling and biodegradation behavior due to the variable Fe3O4 intercalations into GO-sheets. Antibacterial activities of porous scaffolds were studied against severe Gram-positive and Gram-negative pathogens and increased Fe3O4 amount in nanosystem increased the antibacterial activities. The cell viability and morphology of pre-osteoblast (MC3T3-E1) cell lines were studied against porous scaffolds and increased cell viability and proliferation were observed from HFG-1 to HFG-4. Hence, the electroactive material could be the potential material for bone tissue engineering.


Assuntos
Nanocompostos , Engenharia Tecidual , Antibacterianos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Osso e Ossos , Nanocompostos/química , Porosidade , Engenharia Tecidual/métodos , Alicerces Teciduais/química
9.
Polymers (Basel) ; 14(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35631834

RESUMO

Polymeric materials have been essential biomaterials to develop hydrogels as wound dressings for sustained drug delivery and chronic wound healing. The microenvironment for wound healing is created by biocompatibility, bioactivity, and physicochemical behavior. Moreover, a bacterial infection often causes the healing process. The bacterial cellulose (BC) was functionalized using graphene oxide (GO) by hydrothermal method to have bacterial cellulose-functionalized-Graphene oxide (BC-f-GO). A simple blending method was used to crosslink BC-f-GO with polyvinyl alcohol (PVA) by tetraethyl orthosilicate (TEOS) as a crosslinker. The structural, morphological, wetting, and mechanical tests were conducted using Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM), water contact angle, and a Universal testing machine (UTM). The release of Silver-sulphadiazine and drug release kinetics were studied at various pH levels and using different mathematical models (zero-order, first-order, Higuchi, Hixson, Korsmeyer-Peppas, and Baker-Lonsdale). The antibacterial properties were conducted against Gram-positive and Gram-negative severe infection-causing pathogens. These composite hydrogels presented potential anticancer activities against the U87 cell line by an increased GO amount. The result findings show that these composite hydrogels have physical-mechanical and inherent antimicrobial properties and controlled drug release, making them an ideal approach for skin wound healing. As a result, these hydrogels were discovered to be an ideal biomaterial for skin wound healing.

10.
Int J Biol Macromol ; 208: 475-485, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35318081

RESUMO

Biopolymer-based composite hydrogels have attracted tremendous attention for tissue regeneration and antitumor applications. Since sodium alginate is a biopolymer, they offer excellent therapeutic options with long-term drug release and low side effects. To prepare multifunctional composite hydrogels with anticancer and tissue regeneration capabilities, sodium alginate (SA) and graphene oxide (GO) were covalently linked and crosslinked with tetraethyl orthosilicate (TEOS) by the solvothermal method. The structural and morphological results show that the hydrogels exhibit the desired functionality and porosity. The swelling of hydrogels in an aqueous and PBS medium was investigated. SGT-4 had the highest swelling in both aqueous and PBS media. Swelling and biodegradation of the hydrogel were inversely related. The drug release of SGT-4 was determined in different pH media (pH 6.4, 7.4, and 8.4) and the kinetics of drug release was determined according to the Higuchi model (R2 = 0.93587). Antibacterial activities were evaluated against severe infectious agents. Uppsala (U87) and osteoblast (MC3T3-E1) cell lines were used to determine the anticancer and biocompatibility of the composite hydrogels, respectively. These results suggest that the composite hydrogels could be used as potential biomaterials for tissue regeneration and antitumor applications.


Assuntos
Grafite , Hidrogéis , Alginatos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Grafite/química , Grafite/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia
11.
Int J Biol Macromol ; 222(Pt A): 462-472, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36155784

RESUMO

Globally, people suffering from bone disorders are steadily increasing and bone tissue engineering is an advanced approach to treating fractured and defected bone tissues. In this study, we have prepared polymeric nanocomposite by free-radical polymerization from sodium alginate, hydroxyapatite, and silica with different GO amounts. The porous scaffolds were fabricated using the freeze drying technique. The structural, morphological, mechanical, and wetting investigation was conducted by Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, universal tensile machine, and water contact angle characterization techniques. The swelling, biodegradation, and water retention were also studied. The biological studies were performed (cell viability, cell adherence, proliferation, and mineralization) against osteoblast cell lines. Scaffolds have exhibited different pore morphology SAG-1 (pore size = 414.61 ± 56 µm and porosity = 81.45 ± 2.17 %) and SAG-4 (pore size = 195.97 ± 82 µm and porosity = 53.82 ± 2.45 %). They have different mechanical behavior as SAG-1 has the least compression strength and compression modulus 2.14 ± 2.35 and 16.51 ± 1.27 MPa. However, SAG-4 has maximum compression strength and compression modulus 13.67 ± 2.63 and 96.16 ± 1.97 MPa with wetting behavior 80.70° and 58.70°, respectively. Similarly, SAG-1 exhibited the least and SAG-4 presented maximum apatite mineral formation, cell adherence, cell viability, and cell proliferation against mouse pre-osteoblast cell lines. The increased GO amount provides different multifunctional materials with different characteristics. Hence, the fabricated scaffolds could be potential scaffold materials to treat and regenerate fracture bone tissues in bone tissue engineering.


Assuntos
Dióxido de Silício , Engenharia Tecidual , Camundongos , Animais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Alginatos , Osso e Ossos , Durapatita/farmacologia , Durapatita/química , Porosidade , Água , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química
12.
Biomolecules ; 12(7)2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35883527

RESUMO

The number of deaths has been increased due to COVID-19 infections and uncertain neurological complications associated with the central nervous system. Post-infections and neurological manifestations in neuronal tissues caused by COVID-19 are still unknown and there is a need to explore how brainstorming promoted congenital impairment, dementia, and Alzheimer's disease. SARS-CoV-2 neuro-invasion studies in vivo are still rare, despite the fact that other beta-coronaviruses have shown similar properties. Neural (olfactory or vagal) and hematogenous (crossing the blood-brain barrier) pathways have been hypothesized in light of new evidence showing the existence of SARS-CoV-2 host cell entry receptors into the specific components of human nerve and vascular tissue. Spike proteins are the primary key and structural component of the COVID-19 that promotes the infection into brain cells. Neurological manifestations and serious neurodegeneration occur through the binding of spike proteins to ACE2 receptor. The emerging evidence reported that, due to the high rate in the immediate wake of viral infection, the olfactory bulb, thalamus, and brain stem are intensely infected through a trans-synaptic transfer of the virus. It also instructs the release of chemokines, cytokines, and inflammatory signals immensely to the blood-brain barrier and infects the astrocytes, which causes neuroinflammation and neuron death; and this induction of excessive inflammation and immune response developed in more neurodegeneration complications. The present review revealed the pathophysiological effects, molecular, and cellular mechanisms of possible entry routes into the brain, pathogenicity of autoantibodies and emerging immunotherapies against COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Humanos , Glicoproteína da Espícula de Coronavírus/química
13.
Polymers (Basel) ; 14(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36145871

RESUMO

A medication's approximate release profile should be sustained in order to generate the desired therapeutic effect. The drug's release site, duration, and rate must all be adjusted to the drug's therapeutic aim. However, when designing drug delivery systems, this may be a considerable hurdle. Electrospinning is a promising method of creating a nanofibrous membrane since it enables drugs to be placed in the nanofiber composite and released over time. Nanofiber composites designed through electrospinning for drug release purposes are commonly constructed of simple structures. This nanofiber composite produces matrices with nanoscale fiber structure, large surface area to volume ratio, and a high porosity with small pore size. The nanofiber composite's large surface area to volume ratio can aid with cell binding and multiplication, drug loading, and mass transfer processes. The nanofiber composite acts as a container for drugs that can be customized to a wide range of drug release kinetics. Drugs may be electrospun after being dissolved or dispersed in the polymer solution, or they can be physically or chemically bound to the nanofiber surface. The composition and internal structure of the nanofibers are crucial for medicine release patterns.

14.
Polymers (Basel) ; 13(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34372132

RESUMO

Tissue engineering and regenerative medicine are generally concerned with reconstructing cells, tissues, or organs to restore typical biological characteristics. Liposomes are round vesicles with a hydrophilic center and bilayers of amphiphiles which are the most influential family of nanomedicine. Liposomes have extensive research, engineering, and medicine uses, particularly in a drug delivery system, genes, and vaccines for treatments. Exosomes are extracellular vesicles (EVs) that carry various biomolecular cargos such as miRNA, mRNA, DNA, and proteins. As exosomal cargo changes with adjustments in parent cells and position, research of exosomal cargo constituents provides a rare chance for sicknesses prognosis and care. Exosomes have a more substantial degree of bioactivity and immunogenicity than liposomes as they are distinctly chiefly formed by cells, which improves their steadiness in the bloodstream, and enhances their absorption potential and medicinal effectiveness in vitro and in vivo. In this review, the crucial challenges of exosome and liposome science and their functions in disease improvement and therapeutic applications in tissue engineering and regenerative medicine strategies are prominently highlighted.

15.
Polymers (Basel) ; 13(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34771168

RESUMO

Several significant advancements in the field of bone regenerative medicine have been made in recent years. However, therapeutic options, such as bone grafts, have several drawbacks. There is a need to develop an adequate bone substitute. As a result, significant bone defects/injuries pose a severe challenge for orthopaedic and reconstructive bone tissue. We synthesized polymeric composite material from arabinoxylan (ARX), ß-glucan (BG), nano-hydroxyapatite (nHAp), graphene oxide (GO), acrylic acid (AAc) through free radical polymerization and porous scaffold fabricated using the freeze-drying technique. These fabricated porous scaffolds were then coated with chitosan solution to enhance their biological activities. The complex structure of BG, nHAp, GO was studied through various characterization and biological assays. The structural, morphological, wetting and mechanical analyses were determined using FT-IR, XRD, XPS, SEM/EXD, water contact angle and UTM. The swelling (aqueous and PBS media) and degradation (PBS media) observed their behavior in contact with body fluid. The biological activities were conducted against mouse pre-osteoblast cell lines. The result found that BGH3 has desirable morphological, structural with optimum swelling, degradation, and mechanical behavior. It was also found to be cytocompatible against MC3T3-E1 cell lines. The obtained results confirmed that the fabricated polymeric scaffolds would be a potential bone substitute to regenerate defective bone with different loading bearing applications for bone tissue engineering.

16.
Polymers (Basel) ; 13(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34578025

RESUMO

The composite hydrogels were produced using the solution casting method due to the non-toxic and biocompatible nature of chitosan (CS)/polyvinyl alcohol (PVA). The best composition was chosen and crosslinked with tetraethyl orthosilicate (TEOS), after which different amounts of graphene oxide (GO) were added to develop composite hydrogels. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle was used to analyze the hydrogels. The samples were also evaluated for swelling abilities in various mediums. The drug release profile was studied in phosphate-buffered saline (PBS) at a pH of 7.4. To predict the mechanism of drug release, the data were fitted into kinetic models. Finally, antibacterial activity and cell viability data were obtained. FTIR studies revealed the successful synthesis of CS/PVA hydrogels and GO/CS/PVA in hydrogel composite. SEM showed no phase separation of the polymers, whereas AFM showed a decrease in surface roughness with an increase in GO content. 100 µL of crosslinker was the critical concentration at which the sample displayed excellent swelling and preserved its structure. Both the crosslinked and composite hydrogel showed good swelling. The most acceptable mechanism of drug release is diffusion-controlled, and it obeys Fick's law of diffusion for drug released. The best fitting of the zero-order, Hixson-Crowell and Higuchi models supported our assumption. The GO/CS/PVA hydrogel composite showed better antibacterial and cell viability behaviors. They can be better biomaterials in biomedical applications.

17.
Pharmaceutics ; 13(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34834315

RESUMO

Transdermal drug delivery systems (TDDS) have drawn more interest from pharmaceutical scientists because they could provide steady blood levels and prevent the first-pass metabolism over a longer period. Polyvinyl alcohol (PVA) has been widely used in this application due to its biocompatibility, non-toxicity, nanofiber and hydrogel-forming ability. Despite those benefits, their morphology would easily be destroyed by continuous water absorption and contribute to burst drug release due to its hydrophilicity. The aim of this study was to prepare the diclofenac sodium (DS)-medicated dual layer PVA patch using a combination of electrospinning and cryogelation (freeze-thaw) methods to improve the physicochemical properties and drug compatibility and investigate the release of the DS-medicated dual layer PVA patch. Morphological observations using scanning electron microscopy (SEM) verified the polymer-polymer interaction between both layers, whereas Fourier transform infrared (FTIR) spectroscopy has demonstrated the compatibility of DS in PVA matrix up to 2% w/v of PVA volume. The DS loads were found amorphously distributed efficaciously in PVA matrix as no visible spectra of DS-PVA interaction were detected. The DS-medicated dual layer PVA patch with a thicker nanofiber layer (3-milliliter running volume), three freeze-thaw cycles and 2% DS loading labeled as 2%DLB3C show the lowest swelling capacity (18.47%). The in vitro assessment using Franz diffusion cells showed that the 2%DLB3C indicates a better sustained release of DS, with 53.26% of the DS being released after 12 h. The 2%DLB3C owned a flux (Jss) of 0.256 mg/cm2/h and a permeability coefficient (Kp) value of 0.020 cm/h. Thus, the results demonstrate that DS-medicated dual layer PVA patches prepared via a combination of electrospinning and cryogelation are capable of releasing drugs for up to 24 h and can serve as a drug reservoir in the skin, thereby extending the pharmacologic effects of DS.

18.
Int J Biol Macromol ; 181: 82-98, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33771547

RESUMO

Vitamin D deficiency is now a global health problem; despite several drug delivery systems for carrying vitamin D due to low bioavailability and loss bioactivity. Developing a new drug delivery system to deliver vitamin D3 is a strong incentive in the current study. Hence, an implantable drug delivery system (IDDS) was developed from the electrospun cellulose acetate (CA) and ε-polycaprolactone (PCL) nanofibrous membrane, in which the core of implants consists of vitamin D3-loaded CA nanofiber (CAVD) and enclosed in a thin layer of the PCL membrane (CAVD/PCL). CA nanofibrous mat loaded with vitamin D3 at the concentrations of 6, 12, and 20% (w/w) of vitamin D3 were produced using electrospinning. The smooth and bead-free fibers with diameters ranged from 324 to 428 nm were obtained. The fiber diameters increased with an increase in vitamin D3 content. The controlled drug release profile was observed over 30-days, which fit with the zero-order model (R2 > 0.96) in the first stage. The mechanical properties of IDDS were improved. Young's modulus and tensile strength of CAVD/PCL (dry) were161 ± 14 and 13.07 ± 2.5 MPa, respectively. CA and PCL nanofibers are non-cytotoxic based on the results of the in-vitro cytotoxicity studies. This study can further broaden in-vivo study and provide a reference for developing a new IDDS to carry vitamin D3 in the future.


Assuntos
Celulose/análogos & derivados , Colecalciferol/farmacologia , Liberação Controlada de Fármacos , Nanofibras/química , Poliésteres/química , Varredura Diferencial de Calorimetria , Morte Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Celulose/química , Condutividade Elétrica , Humanos , Nanofibras/ultraestrutura , Temperatura , Viscosidade , Água/química
19.
Polymers (Basel) ; 13(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34372062

RESUMO

The aim of this study is to prepare a dual layer polyvinyl (PVA) patch using a combination of electrospinning techniques and cryogelation (freeze-thaw process) then subsequently to investigate the effect of freeze-thaw cycles, nanofiber thickness, and diclofenac sodium (DS) loading on the physicochemical and mechanical properties and formulation of dual layer PVA patches composed of electrospun PVA nanofibers and PVA cryogel. After the successful preparation of the dual layer PVA patch, the prepared patch was subjected to investigation to assess the effect of freeze-thaw cycles, nanofiber thickness and percentages of DS loading on the morphology, physiochemical and mechanical properties. Various spectroscopic techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), water contact angle, and tensile tests were used to evaluate the physicochemical and mechanical properties of prepared dual layer PVA patches. The morphological structures of the dual layer PVA patch demonstrated the effectiveness of both techniques. The effect of freeze-thaw cycles, nanofiber thickness, and DS percentage loading on the crystallinity of a dual layer PVA patch was investigated using XRD analysis. The presence of a distinct DS peak in the FTIR spectrum indicates the compatibility of DS in a dual layer PVA patch through in-situ loading. All prepared patches were considered highly hydrophilic because the data obtained was less than 90°. The increasing saturation of DS within the PVA matrix increases the tensile strength of prepared patches, however decreased its elasticity. Evidently, the increasing of electrospun PVA nanofibers thickness, freeze-thaw cycles, and the DS saturation has improved the physicochemical and mechanical properties of the DS medicated dual layer PVA patches, making them a promising biomaterial for transdermal drug delivery applications.

20.
Int J Biol Macromol ; 192: 820-831, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34648803

RESUMO

Carbohydrate polymers are biological macromolecules that have sparked a lot of interest in wound healing due to their outstanding antibacterial properties and sustained drug release. Arabinoxylan (ARX), Chitosan (CS), and reduced graphene oxide (rGO) sheets were combined and crosslinked using tetraethyl orthosilicate (TEOS) as a crosslinker to fabricate composite hydrogels and assess their potential in wound dressing for skin wound healing. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and biological assays were used to evaluate the composite hydrogels. FTIR validated the effective fabrication of the composite hydrogels. The rough morphologies of the composite hydrogels were revealed by SEM and AFM (as evident from the Ra values). ATC-4 was discovered to have the roughest surface. TEM revealed strong homogeneous anchoring of the rGO to the polymer matrix. However, with higher amount of rGO agglomeration was detected. The % swelling at various pHs (1-13) revealed that the hydrogels were pH-sensitive. The controlled release profile for the antibacterial drug (Silver sulfadiazine) evaluated at various pH values (4.5, 6.8, and 7.4) in PBS solution and 37 °C using the Franz diffusion method revealed maximal drug release at pH 7.4 and 37 °C. The antibacterial efficacy of the composite hydrogels against pathogens that cause serious skin diseases varied. The MC3T3-E1 cell adhered, proliferated, and differentiated well on the composite hydrogels. MC3T3-E1 cell also illustrated excellent viability (91%) and proper cylindrical morphologies on the composite hydrogels. Hence, the composite hydrogels based on ARX, CS, and rGO are promising biomaterials for treating and caring for skin wounds.


Assuntos
Bandagens , Materiais Biocompatíveis/química , Quitosana/química , Grafite/química , Concentração de Íons de Hidrogênio , Xilanos/química , Animais , Antibacterianos/administração & dosagem , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Hidrogéis/química , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA