Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomech Model Mechanobiol ; 18(6): 1745-1757, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31140054

RESUMO

The process of vision begins in the retina, yet the role of biomechanical forces in the retina is relatively unknown and only recently being explored. This contribution describes a computational framework involving 3D fluid-structure interaction simulations derived from fundus images that work towards creating unique data on retinal biomechanics. We developed methods to convert 2D fundus photographs into 3D geometries that follow the curvature of the retina. Retina arterioles are embedded into a six-layer representation of the retinal tissue with varying material properties throughout the retinal tissue. Using three different human retinas (healthy, glaucoma, diabetic retinopathy) and by varying our simulation approaches, we report the effects of transient versus steady flow, viscosity assumptions (Newtonian, non-Newtonian and Fåhræus-Lindqvist effect) and rigid versus compliant retinal tissue, on resulting wall shear stress (WSS) and von Mises stress. In the retinal arterioles, the choice of viscosity model is important and WSS obtained from models with the Fåhræus-Lindqvist effect is markedly different from Newtonian and non-Newtonian models. We found little difference in WSS between steady-state and pulsatile simulations (< 5%) and show that WSS varies by about 7% between rigid and deformable models. Comparing the three geometries, we found notably different WSS in the healthy (3.3 ± 1.3 Pa), glaucoma (5.7 ± 1.6 Pa) and diabetic retinopathy cases (4.3 ± 1.1 Pa). Conversely, von Mises stress was similar in each case. We have reported a novel biomechanical framework to explore the stresses in the retina. Despite current limitations and lack of complete subject-specific physiological inputs, we believe our framework is the first of its kind and with further improvements could be useful to better understand the biomechanics of the retina.


Assuntos
Hemodinâmica , Modelos Biológicos , Retina/fisiopatologia , Estresse Mecânico , Arteríolas/fisiopatologia , Fundo de Olho , Humanos , Doenças Retinianas/fisiopatologia , Vasos Retinianos/fisiopatologia , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA