Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(10): 5959-5974, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38426935

RESUMO

Tandem donor splice sites (5'ss) are unique regions with at least two GU dinucleotides serving as splicing cleavage sites. The Δ3 tandem 5'ss are a specific subclass of 5'ss separated by 3 nucleotides which can affect protein function by inserting/deleting a single amino acid. One 5'ss is typically preferred, yet factors governing particular 5'ss choice are not fully understood. A highly conserved exon 21 of the STAT3 gene was chosen as a model to study Δ3 tandem 5'ss splicing mechanisms. Based on multiple lines of experimental evidence, endogenous U1 snRNA most likely binds only to the upstream 5'ss. However, the downstream 5'ss is used preferentially, and the splice site choice is not dependent on the exact U1 snRNA binding position. Downstream 5'ss usage was sensitive to exact nucleotide composition and dependent on the presence of downstream regulatory region. The downstream 5'ss usage could be best explained by two novel interactions with endogenous U6 snRNA. U6 snRNA enables the downstream 5'ss usage in STAT3 exon 21 by two mechanisms: (i) binding in a novel non-canonical register and (ii) establishing extended Watson-Crick base pairing with the downstream regulatory region. This study suggests that U6:5'ss interaction is more flexible than previously thought.


Assuntos
Éxons , Sítios de Splice de RNA , RNA Nuclear Pequeno , Fator de Transcrição STAT3 , RNA Nuclear Pequeno/metabolismo , RNA Nuclear Pequeno/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Humanos , Sítios de Ligação/genética , Splicing de RNA , Ligação Proteica , Sequência de Bases , Células HeLa
2.
J Med Genet ; 61(9): 908-913, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-38955476

RESUMO

BACKGROUND: Transport protein particle (TRAPP) is a multiprotein complex that functions in localising proteins to the Golgi compartment. The TRAPPC11 subunit has been implicated in diseases affecting muscle, brain, eye and to some extent liver. We present three patients who are compound heterozygotes for a missense variant and a structural variant in the TRAPPC11 gene. TRAPPC11 structural variants have not yet been described in association with a disease. In order to reveal the estimated genesis of identified structural variants, we performed sequencing of individual breakpoint junctions and analysed the extent of homology and the presence of repetitive elements in and around the breakpoints. METHODS: Biochemical methods including isoelectric focusing on serum transferrin and apolipoprotein C-III, as well as mitochondrial respiratory chain complex activity measurements, were used. Muscle biopsy samples underwent histochemical analysis. Next-generation sequencing was employed for identifying sequence variants associated with neuromuscular disorders, and Sanger sequencing was used to confirm findings. RESULTS: We suppose that non-homologous end joining is a possible mechanism of deletion origin in two patients and non-allelic homologous recombination in one patient. Analyses of mitochondrial function performed in patients' skeletal muscles revealed an imbalance of mitochondrial metabolism, which worsens with age and disease progression. CONCLUSION: Our results contribute to further knowledge in the field of neuromuscular diseases and mutational mechanisms. This knowledge is important for understanding the molecular nature of human diseases and allows us to improve strategies for identifying disease-causing mutations.


Assuntos
Distrofias Musculares , Adulto , Criança , Feminino , Humanos , Masculino , Deleção de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/patologia , Mutação de Sentido Incorreto/genética
3.
Br J Haematol ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191490

RESUMO

The CYCS gene is highly evolutionarily conserved, with only a few pathogenic variants that cause thrombocytopenia-4 (THC4). Here, we report a novel CYCS variant NM_018947.6: c.59C>T [NP_061820.1:p.(Thr20Ile)] segregating with thrombocytopenia in three generations of a Czech family. The phenotype of the patients corresponds to THC4 with platelets of normal size and morphology and dominant inheritance. Intriguingly, a gradual decline in platelet counts was observed across generations. CRISPR/Cas9-mediated gene editing was used to introduce the new CYCS gene variant into a megakaryoblast cell line (MEG-01). Subsequently, the adhesion, shape, size, ploidy, viability, mitochondrial respiration, cytochrome c protein (CYCS) expression, cell surface antigen expression and caspase activity were analysed in cells carrying the studied variant. Interestingly, the variant decreases the expression of CYCS while increasing mitochondrial respiration and the expression of CD9 cell surface antigen. Surprisingly, the variant abates caspase activation, contrasting with previously known effects of other CYCS variants. Some reports indicate that caspases may be involved in thrombopoiesis; thus, the observed dysregulation of caspase activity might contribute to thrombocytopenia. The findings significantly enhance our understanding of the molecular mechanisms underlying inherited thrombocytopenia and may have implications for diagnosis, prognosis and future targeted therapies.

4.
Clin Genet ; 104(5): 542-553, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37526466

RESUMO

Limb girdle muscular dystrophies (LGMD) are a genetically heterogeneous group of muscular dystrophies. The study presents an overview of molecular characteristics of a large cohort of LGMD patients who are representative of the Czech LGMD population. We present 226 LGMD probands in which 433 mutant alleles carrying 157 different variants with a supposed pathogenic effect were identified. Fifty-four variants have been described only in the Czech LGMD population so far. LGMD R1 caplain3-related is the most frequent subtype of LGMD involving 53.1% of patients with genetically confirmed LGMD, followed by LGMD R9 FKRP-related (11.1%), and LGMD R12 anoctamin5-related (7.1%). If we consider identified variants, then all but five were small-scale variants. One large gene deletion was identified in the LAMA2 gene and two deletions in each of CAPN3 and SGCG. We performed comparison our result with other published studies. The results obtained in the Czech LGMD population clearly differ from the outcome of other LGMD populations in two aspects-we have a more significant proportion of patients with LGMD R1 calpain3-related and a smaller proportion of LGMD R2 dysferlin-related.

5.
Biophys J ; 121(5): 705-714, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35122735

RESUMO

Kink-turns are highly bent internal loop motifs commonly found in the ribosome and other RNA complexes. They frequently act as binding sites for proteins and mediate tertiary interactions in larger RNA structures. Kink-turns have been a topic of intense research, but their elastic properties in the folded state are still poorly understood. Here we use extensive all-atom molecular dynamics simulations to parameterize a model of kink-turn in which the two flanking helical stems are represented by effective rigid bodies. Time series of the full set of six interhelical coordinates enable us to extract minimum energy shapes and harmonic stiffness constants for kink-turns from different RNA functional classes. The analysis suggests that kink-turns exhibit isotropic bending stiffness but are highly anisotropic with respect to lateral displacement of the stems. The most flexible lateral displacement mode is perpendicular to the plane of the static bend. These results may help understand the structural adaptation and mechanical signal transmission by kink-turns in complex natural and artificial RNA structures.


Assuntos
Simulação de Dinâmica Molecular , RNA , Sítios de Ligação , Conformação de Ácido Nucleico , RNA/química , Ribossomos/metabolismo
6.
Epilepsy Behav ; 128: 108564, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065395

RESUMO

AIM: The primary goal was to determine the yield of next-generation sequencing (NGS) epilepsy gene panels used for epilepsy etiology diagnosing using a multidisciplinary approach and to demonstrate the importance of genotype-phenotype correlations. The secondary goal was to evaluate the application of precision medicine in selected patients. METHODS: This single-center retrospective study included a total of 175 patients (95 males and 80 females) aged 0-19 years. They were examined between 2015 and 2020 using an NGS epilepsy gene panel (270 genes). A bioinformatic analysis was performed including copy number variation identification. Thorough genotype-phenotype correlation was performed. RESULTS: Out of 175 patients, described pathogenic variants or novel variants with clear pathogenic impact were identified in 30 patients (17.14%). Genotype-phenotype correlations and parental DNA analysis were performed, and genetic diagnosis was confirmed on the basis of the results in another 16 out of 175 patients (9.14%). The diagnostic yield of our study increased from 30 to 46 patients (by 53.33%) by the precise genotype-phenotype correlation. INTERPRETATION: We emphasize a complex genotype-phenotype correlation and a multidisciplinary approach in evaluating the results of the NGS epilepsy gene panel, which enables the most accurate genetic diagnosis and correct interpretation of results.


Assuntos
Variações do Número de Cópias de DNA , Epilepsia , Epilepsia/diagnóstico , Epilepsia/genética , Feminino , Estudos de Associação Genética , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Mutação , Fenótipo , Estudos Retrospectivos
7.
Nucleic Acids Res ; 48(20): 11322-11334, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33080020

RESUMO

Mismatch repair is a highly conserved cellular pathway responsible for repairing mismatched dsDNA. Errors are detected by the MutS enzyme, which most likely senses altered mechanical property of damaged dsDNA rather than a specific molecular pattern. While the curved shape of dsDNA in crystallographic MutS/DNA structures suggests the role of DNA bending, the theoretical support is not fully convincing. Here, we present a computational study focused on a base-pair opening into the minor groove, a specific base-pair motion observed upon interaction with MutS. Propensities for the opening were evaluated in terms of two base-pair parameters: Opening and Shear. We tested all possible base pairs in anti/anti, anti/syn and syn/anti orientations and found clear discrimination between mismatches and canonical base-pairs only for the opening into the minor groove. Besides, the discrimination gap was also confirmed in hotspot and coldspot sequences, indicating that the opening could play a more significant role in the mismatch recognition than previously recognized. Our findings can be helpful for a better understanding of sequence-dependent mutability. Further, detailed structural characterization of mismatches can serve for designing anti-cancer drugs targeting mismatched base pairs.


Assuntos
Pareamento Incorreto de Bases , Reparo de Erro de Pareamento de DNA , DNA/química , Simulação de Dinâmica Molecular , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Pareamento de Bases , Biologia Computacional , DNA/metabolismo , Ligação de Hidrogênio , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Termodinâmica
8.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055070

RESUMO

Bernard-Soulier syndrome (BSS) is a rare inherited disorder characterized by unusually large platelets, low platelet count, and prolonged bleeding time. BSS is usually inherited in an autosomal recessive (AR) mode of inheritance due to a deficiency of the GPIb-IX-V complex also known as the von Willebrand factor (VWF) receptor. We investigated a family with macrothrombocytopenia, a mild bleeding tendency, slightly lowered platelet aggregation tests, and suspected autosomal dominant (AD) inheritance. We have detected a heterozygous GP1BA likely pathogenic variant, causing monoallelic BSS. A germline GP1BA gene variant (NM_000173:c.98G > A:p.C33Y), segregating with the macrothrombocytopenia, was detected by whole-exome sequencing. In silico analysis of the protein structure of the novel GPIbα variant revealed a potential structural defect, which could impact proper protein folding and subsequent binding to VWF. Flow cytometry, immunoblot, and electron microscopy demonstrated further differences between p.C33Y GP1BA carriers and healthy controls. Here, we provide a detailed insight into its clinical presentation and phenotype. Moreover, the here described case first presents an mBSS patient with two previous ischemic strokes.


Assuntos
Alelos , Síndrome de Bernard-Soulier/diagnóstico , Síndrome de Bernard-Soulier/genética , Predisposição Genética para Doença , Variação Genética , Fenótipo , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Síndrome de Bernard-Soulier/sangue , Plaquetas/metabolismo , Plaquetas/ultraestrutura , República Tcheca , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Humanos , Imunofenotipagem , Masculino , Linhagem , Contagem de Plaquetas , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Trombocitopenia/sangue , Trombocitopenia/diagnóstico
9.
Platelets ; 32(6): 838-841, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32819174

RESUMO

Germline mutations in ETV6 gene cause inherited thrombocytopenia with leukemia predisposition. Here, we report on functional validation of ETV6 W380R mutation segregating with thrombocytopenia in a family where two family members also suffered from acute lymphoblastic leukemia (ALL) or essential thrombocythemia (ET). In-silico analysis predicted impaired DNA binding due to W380R mutation. Functional analysis showed that this mutation prevents the ETV6 protein from localizing into the cell nucleus and impairs the transcriptional repression activity of ETV6. Based on the germline ETV6 mutation, ET probably started with somatic JAK2 V617F mutation, whereas ALL could be caused by diverse mechanisms: high-hyperdiploidity; somatic deletion of exon 1 IKZF1 gene; or somatic mutations of other genes found by exome sequencing of the ALL sample taken at the diagnosis.


Assuntos
Mutação em Linhagem Germinativa/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Repressoras/metabolismo , Trombocitemia Essencial/genética , Trombocitopenia/metabolismo , Humanos , Variante 6 da Proteína do Fator de Translocação ETS
10.
Ann Hematol ; 98(2): 423-435, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30368590

RESUMO

Activation-induced cytidine deaminase (AID) is a mutator enzyme essential for somatic hypermutation (SHM) and class switch recombination (CSR) during effective adaptive immune responses. Its aberrant expression and activity have been detected in lymphomas, leukemias, and solid tumors. In chronic lymphocytic leukemia (CLL) increased expression of alternatively spliced AID variants has been documented. We used real-time RT-PCR to quantify the expression of AID and its alternatively spliced transcripts (AIDΔE4a, AIDΔE4, AIDivs3, and AIDΔE3E4) in 149 CLL patients and correlated this expression to prognostic markers including recurrent chromosomal aberrations, the presence of complex karyotype, mutation status of the immunoglobulin heavy chain variable gene, and recurrent mutations. We report a previously unappreciated association between higher AID transcript levels and trisomy of chromosome 12. Functional analysis of AID splice variants revealed loss of their activity with respect to SHM, CSR, and induction of double-strand DNA breaks. In silico modeling provided insight into the molecular interactions and structural dynamics of wild-type AID and a shortened AID variant closely resembling AIDΔE4, confirming its loss-of-function phenotype.


Assuntos
Processamento Alternativo , Citidina Desaminase , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B , Modelos Biológicos , Proteínas de Neoplasias , Trissomia , Idoso , Animais , Cromossomos Humanos Par 12/enzimologia , Cromossomos Humanos Par 12/genética , Simulação por Computador , Citidina Desaminase/biossíntese , Citidina Desaminase/química , Citidina Desaminase/genética , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/enzimologia , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Simulação de Dinâmica Molecular , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Trissomia/genética , Trissomia/patologia
11.
RNA Biol ; 16(10): 1364-1376, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31213135

RESUMO

Splicing-affecting mutations can disrupt gene function by altering the transcript assembly. To ascertain splicing dysregulation principles, we modified a minigene assay for the parallel high-throughput evaluation of different mutations by next-generation sequencing. In our model system, all exonic and six intronic positions of the SMN1 gene's exon 7 were mutated to all possible nucleotide variants, which amounted to 180 unique single-nucleotide mutants and 470 double mutants. The mutations resulted in a wide range of splicing aberrations. Exonic splicing-affecting mutations resulted either in substantial exon skipping, supposedly driven by predicted exonic splicing silencer or cryptic donor splice site (5'ss) and de novo 5'ss strengthening and use. On the other hand, a single disruption of exonic splicing enhancer was not sufficient to cause major exon skipping, suggesting these elements can be substituted during exon recognition. While disrupting the acceptor splice site led only to exon skipping, some 5'ss mutations potentiated the use of three different cryptic 5'ss. Generally, single mutations supporting cryptic 5'ss use displayed better pre-mRNA/U1 snRNA duplex stability and increased splicing regulatory element strength across the original 5'ss. Analyzing double mutants supported the predominating splicing regulatory elements' effect, but U1 snRNA binding could contribute to the global balance of splicing isoforms. Based on these findings, we suggest that creating a new splicing enhancer across the mutated 5'ss can be one of the main factors driving cryptic 5'ss use.


Assuntos
Processamento Alternativo , Éxons , Mutação , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Linhagem Celular , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Simulação de Dinâmica Molecular , Mutagênese , Conformação de Ácido Nucleico , Ligação Proteica , Sítios de Splice de RNA , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/química , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
12.
Platelets ; 29(8): 827-833, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30332551

RESUMO

Mutations in the GP1BA gene have been associated with platelet-type von Willebrand disease and Bernard-Soulier syndrome. Here, we report a novel GP1BA mutation in a family with autosomal dominant macrothrombocytopenia and mild bleeding. We performed analyses of seven family members. Using whole-exome sequencing of germline DNA samples, we identified a heterozygous single-nucleotide change in GP1BA (exone2:c.176T>G), encoding a p.Leu59Arg substitution in the N-terminal domain, segregating with macrothrombocytopenia. This variant has not been previously reported. We also analysed the structure of the detected sequence variant in silico. In particular, we used the crystal structure of the human platelet receptor GP Ibα N-terminal domain. Replacement of aliphatic amino-acid Leu 59 with charged, polar and larger arginine probably disrupts the protein structure. An autosomal dominant mode of inheritance, a family history of mild bleeding episodes, aggregation pattern in affected individuals together with evidence of mutation occurring in part of the GP1BA gene encoding the leucine-rich repeat region suggest a novel variant causing monoallelic Bernard-Soulier syndrome.


Assuntos
Síndrome de Bernard-Soulier/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Mutação Puntual , Síndrome de Bernard-Soulier/metabolismo , Cristalografia por Raios X , Feminino , Humanos , Masculino , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Domínios Proteicos
13.
Gen Physiol Biophys ; 36(4): 361-371, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28653649

RESUMO

Phenylketonuria (PKU) and hyperphenylalaninemia (HPA) are a group of genetic disorders predominantly caused by mutations in the phenylalanine hydroxylase (PAH) gene. To date, more than 950 variants have been identified, however the pathogenic mechanism of many variants remains unknown. In this study, in silico prediction and in vitro prokaryotic and eukaryotic expression systems were used to functionally characterize five PAH missense variants (p.F233I, p.R270I, p.F331S, p.S350Y, and p.L358F) previously identified in Slovak and Czech patients. p.F233I, p.R270I, and p.S350Y were classified as deleterious mutations since they showed no specific activity in functional assay and no response to chaperone co-expression. Protein levels of these PAH variants were very low when expressed in HepG2 cells, and only p.S350Y responded to BH4 precursor overload by significant increase in PAH monomer, probably due to reduced rate of protein degradation as the result of proper protein folding. Variants p.F331S and p.L358F exerted residual enzymatic activity in vitro. While the first can be classified as probably pathogenic due to its very low protein levels in HepG2 cells, the latter is considered to be mild mutation with protein levels of approximately 17.85% compared to wt PAH. Our findings contribute to better understanding of structure and function of PAH mutated enzymes and optimal treatment of PKU patients carrying these mutations using BH4 supplementation.


Assuntos
Regulação Enzimológica da Expressão Gênica/genética , Mutação de Sentido Incorreto/genética , Fenilalanina Hidroxilase/química , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/enzimologia , Laranja de Acridina , Sequência de Aminoácidos , Ativação Enzimática , Estabilidade Enzimática , Células Hep G2 , Humanos , Relação Estrutura-Atividade
14.
Phys Chem Chem Phys ; 17(8): 5887-900, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25631765

RESUMO

The hepatitis delta virus (HDV) is the only known human pathogen whose genome contains a catalytic RNA motif (ribozyme). The overall architecture of the HDV ribozyme is that of a double-nested pseudoknot, with two GU pairs flanking the active site. Although extensive studies have shown that mutation of either wobble results in decreased catalytic activity, little work has focused on linking these mutations to specific structural effects on catalytic fitness. Here we use molecular dynamics simulations based on an activated structure to probe the active site dynamics as a result of wobble pair mutations. In both wild-type and mutant ribozymes, the in-line fitness of the active site (as a measure of catalytic proficiency) strongly depends on the presence of a C75(N3H3+)N1(O5') hydrogen bond, which positions C75 as the general acid for the reaction. Our mutational analyses show that each GU wobble supports catalytically fit conformations in distinct ways; the reverse G25U20 wobble promotes high in-line fitness, high occupancy of the C75(N3H3+)G1(O5') general-acid hydrogen bond and stabilization of the G1U37 wobble, while the G1U37 wobble acts more locally by stabilizing high in-line fitness and the C75(N3H3+)G1(O5') hydrogen bond. We also find that stable type I A-minor and P1.1 hydrogen bonding above and below the active site, respectively, prevent local structural disorder from spreading and disrupting global conformation. Taken together, our results define specific, often redundant architectural roles for several structural motifs of the HDV ribozyme active site, expanding the known roles of these motifs within all HDV-like ribozymes and other structured RNAs.


Assuntos
Vírus Delta da Hepatite/metabolismo , RNA Catalítico/química , Pareamento de Bases , Catálise , Domínio Catalítico , Vírus Delta da Hepatite/genética , Humanos , Ligação de Hidrogênio , Magnésio/química , Simulação de Dinâmica Molecular , Mutação , Conformação de Ácido Nucleico , RNA Catalítico/genética , RNA Catalítico/metabolismo , Sódio/química
16.
Nucleic Acids Res ; 40(13): 6290-303, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22451682

RESUMO

The L1 stalk is a key mobile element of the large ribosomal subunit which interacts with tRNA during translocation. Here, we investigate the structure and mechanical properties of the rRNA H76/H75/H79 three-way junction at the base of the L1 stalk from four different prokaryotic organisms. We propose a coarse-grained elastic model and parameterize it using large-scale atomistic molecular dynamics simulations. Global properties of the junction are well described by a model in which the H76 helix is represented by a straight, isotropically flexible elastic rod, while the junction core is represented by an isotropically flexible spherical hinge. Both the core and the helix contribute substantially to the overall H76 bending fluctuations. The presence of wobble pairs in H76 does not induce any increased flexibility or anisotropy to the helix. The half-closed conformation of the L1 stalk seems to be accessible by thermal fluctuations of the junction itself, without any long-range allosteric effects. Bending fluctuations of H76 with a bulge introduced in it suggest a rationale for the precise position of the bulge in eukaryotes. Our elastic model can be generalized to other RNA junctions found in biological systems or in nanotechnology.


Assuntos
RNA Ribossômico 23S/química , Subunidades Ribossômicas Maiores de Arqueas/química , Subunidades Ribossômicas Maiores de Bactérias/química , Fenômenos Biomecânicos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Proteínas Ribossômicas/química
17.
Mol Oncol ; 18(10): 2541-2553, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38770541

RESUMO

Early identification of resistant cancer cells is currently a major challenge, as their expansion leads to refractoriness. To capture the dynamics of these cells, we made a comprehensive analysis of disease progression and treatment response in a chronic lymphocytic leukemia (CLL) patient using a combination of single-cell and bulk genomic methods. At diagnosis, the patient presented with unfavorable genetic markers, including notch receptor 1 (NOTCH1) mutation and loss(11q). The initial and subsequent treatment lines did not lead to a durable response and the patient developed refractory disease. Refractory CLL cells featured substantial dysregulation in B-cell phenotypic markers such as human leukocyte antigen (HLA) genes, immunoglobulin (IG) genes, CD19 molecule (CD19), membrane spanning 4-domains A1 (MS4A1; previously known as CD20), CD79a molecule (CD79A) and paired box 5 (PAX5), indicating B-cell de-differentiation and disease transformation. We described the clonal evolution and characterized in detail two cell populations that emerged during the refractory disease phase, differing in the presence of high genomic complexity. In addition, we successfully tracked the cells with high genomic complexity back to the time before treatment, where they formed a rare subpopulation. We have confirmed that single-cell RNA sequencing enables the characterization of refractory cells and the monitoring of their development over time.


Assuntos
Leucemia Linfocítica Crônica de Células B , Análise de Célula Única , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Análise de Célula Única/métodos , Resistencia a Medicamentos Antineoplásicos/genética , Análise de Sequência de RNA , Masculino
18.
Front Genet ; 14: 1123914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37470035

RESUMO

Hereditary angioedema (HAE) is a rare genetic disorder with variable expressivity even in carriers of the same underlying genetic defect, suggesting other genetic and epigenetic factors participate in modifying HAE severity. Recent knowledge indicates the role of immune cells in several aspects of HAE pathogenesis, which makes monocytes and macrophages candidates to mediate these effects. Here we combined a search for HAE phenotype modifying gene variants with the characterization of selected genes' mRNA levels in monocyte and macrophages in a symptom-free period. While no such gene variant was found to be associated with a more severe or milder disease, patients revealed a higher number of dysregulated genes and their expression profile was significantly altered, which was typically manifested by changes in individual gene expression or by strengthened or weakened relations in mutually co-expressed gene groups, depending on HAE severity. SERPING1 showed decreased expression in HAE-C1INH patients, but this effect was significant only in patients carrying mutations supposedly activating nonsense-mediated decay. Pro-inflammatory CXC chemokine superfamily members CXCL8, 10 and 11 were downregulated, while other genes such as FCGR1A, or long non-coding RNA NEAT1 were upregulated in patients. Co-expression within some gene groups (such as an NF-kappaB function related group) was strengthened in patients with a severe and/or mild course compared to controls. All these findings show that transcript levels in myeloid cells achieve different activation or depression levels in HAE-C1INH patients than in healthy controls and/or based on disease severity and could participate in determining the HAE phenotype.

19.
Nucleic Acids Res ; 38(18): 6247-64, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20507916

RESUMO

We present extensive explicit solvent molecular dynamics analysis of three RNA three-way junctions (3WJs) from the large ribosomal subunit: the 3WJ formed by Helices 90-92 (H90-H92) of 23S rRNA; the 3WJ formed by H42-H44 organizing the GTPase associated center (GAC) of 23S rRNA; and the 3WJ of 5S rRNA. H92 near the peptidyl transferase center binds the 3'-CCA end of amino-acylated tRNA. The GAC binds protein factors and stimulates GTP hydrolysis driving protein synthesis. The 5S rRNA binds the central protuberance and A-site finger (ASF) involved in bridges with the 30S subunit. The simulations reveal that all three 3WJs possess significant anisotropic hinge-like flexibility between their stacked stems and dynamics within the compact regions of their adjacent stems. The A-site 3WJ dynamics may facilitate accommodation of tRNA, while the 5S 3WJ flexibility appears to be essential for coordinated movements of ASF and 5S rRNA. The GAC 3WJ may support large-scale dynamics of the L7/L12-stalk region. The simulations reveal that H42-H44 rRNA segments are not fully relaxed and in the X-ray structures they are bent towards the large subunit. The bending may be related to L10 binding and is distributed between the 3WJ and the H42-H97 contact.


Assuntos
RNA Ribossômico 23S/química , RNA Ribossômico 5S/química , Escherichia coli/genética , Haloarcula marismortui/genética , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Fosfatos/química , RNA Arqueal/química , RNA Bacteriano/química
20.
Nucleic Acids Res ; 38(4): 1325-40, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19952067

RESUMO

Helix 38 (H38) of the large ribosomal subunit, with a length of 110 A, reaches the small subunit through intersubunit bridge B1a. Previous cryo-EM studies revealed that the tip of H38 moves by more than 10 A from the non-ratcheted to the ratcheted state of the ribosome while mutational studies implicated a key role of flexible H38 in attenuation of translocation and in dynamical signaling between ribosomal functional centers. We investigate a region including the elbow-shaped kink-turn (Kt-38) in the Haloarcula marismortui archaeal ribosome, and equivalently positioned elbows in three eubacterial species, located at the H38 base. We performed explicit solvent molecular dynamics simulations on the H38 elbows in all four species. They are formed by at first sight unrelated sequences resulting in diverse base interactions but built with the same overall topology, as shown by X-ray crystallography. The elbows display similar fluctuations and intrinsic flexibilities in simulations indicating that the eubacterial H38 elbows are structural and dynamical analogs of archaeal Kt-38. We suggest that this structural element plays a pivotal role in the large motions of H38 and may act as fulcrum for the abovementioned tip motion. The directional flexibility inferred from simulations correlates well with the cryo-EM results.


Assuntos
RNA Ribossômico 23S/química , Subunidades Ribossômicas Maiores de Arqueas/química , Subunidades Ribossômicas Maiores de Bactérias/química , Microscopia Crioeletrônica , Deinococcus/genética , Escherichia coli/genética , Haloarcula marismortui/genética , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Cloreto de Potássio/química , Sódio/química , Thermus thermophilus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA