Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Biol Chem ; 290(42): 25522-33, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26336104

RESUMO

Androgen receptor (AR) plays a role in maintaining telomere stability in prostate cancer cells, as AR inactivation induces telomere dysfunction within 3 h. Since telomere dysfunction in other systems is known to activate ATM (ataxia telangiectasia mutated)-mediated DNA damage response (DDR) signaling pathways, we investigated the role of ATM-mediated DDR signaling in AR-inactivated prostate cancer cells. Indeed, the induction of telomere dysfunction in cells treated with AR-antagonists (Casodex or MDV3100) or AR-siRNA was associated with a dramatic increase in phosphorylation (activation) of ATM and its downstream effector Chk2 and the presenceof phosphorylated ATM at telomeres, indicating activation of DDR signaling at telomeres. Moreover, Casodex washout led to the reversal of telomere dysfunction, indicating repair of damaged telomeres. ATM inhibitor blocked ATM phosphorylation, induced PARP cleavage, abrogated cell cycle checkpoint activation and attenuated the formation of γH2AX foci at telomeres in AR-inactivated cells, suggesting that ATM inhibitor induces apoptosis in AR-inactivated cells by blocking the repair of damaged DNA at telomeres. Finally, colony formation assay revealed a dramatic decrease in the survival of cells co-treated with Casodex and ATM inhibitor as compared with those treated with either Casodex or ATM inhibitor alone. These observations indicate that inhibitors of DDR signaling pathways may offer a unique opportunity to enhance the potency of AR-targeted therapies for the treatment of androgen-sensitive as well as castration-resistant prostate cancer.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Morte Celular/fisiologia , Neoplasias da Próstata/patologia , Receptores Androgênicos/fisiologia , Telômero , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática , Humanos , Masculino , Neoplasias da Próstata/genética
2.
Mol Cancer Res ; 21(11): 1176-1185, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37477641

RESUMO

Prostate-specific membrane antigen (PSMA) expression increases with prostate cancer grade and progression; however, the role of PSMA in prostate cancer progression remains poorly understood. Telomere stability is essential for the survival and genome stability of cancer cells. We found massive telomere DNA damage in PSMA-negative prostate cancer cells (PC-3 and DU145) compared with PSMA-positive prostate cancer (LNCaP) cells. The ectopic expression of PSMA suppressed telomere DNA damage in PC3 cells. PSMA inhibitor, 2-PMPA, and PSMA knockdown induced telomere DNA damage in PSMA-positive LNCaP cells but not in PSMA-negative PC-3 cells, suggesting that PSMA plays a critical role in telomere stability in prostate cancer cells. In addition, we observed that inhibition of PSMA or inhibition of glutamate receptor, which mediates PSMA-dependent activation of AKT, suppressed AKT phosphorylation, and caused telomere DNA damage. Furthermore, 2-PMPA-induced telomere DNA damage in LNCaP cells was associated with telomere aberrations, such as telomere-telomere fusions, sister-chromatid telomere fusions, and telomere breakages. AKT is reported to promote cell growth by stabilizing telomere association with telomere-binding proteins TRF1 and TPP1. We observed that TRF1 and TPP1 transfection of LNCaP cells attenuated the inhibitory effect of 2-PMPA on cell growth and telomere DNA damage. Together, these observations indicate that PSMA role in maintaining telomere stability in prostate cancer cells is mediated by AKT. Thus, these studies reveal an important role of PSMA in maintaining telomere stability that can promote cell survival and, thereby, prostate cancer progression. IMPLICATIONS: Role of PSMA in telomere stability suggests a strong correlation between PSMA expression and prostate cancer progression.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antígenos de Superfície/genética , Glutamato Carboxipeptidase II/genética , Neoplasias da Próstata/metabolismo , Fosforilação , Telômero/genética , Telômero/metabolismo , Linhagem Celular Tumoral
3.
J Biol Chem ; 285(14): 10472-6, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20110352

RESUMO

The telomeric complex, shelterin, plays a critical role in protecting chromosome ends from erosion, and disruption of these complexes can lead to chromosomal instability culminating in cell death or malignant transformation. We reported previously that dominant-negative mutants of one of the telomeric proteins called TIN2 cause death of androgen receptor (AR)-negative but not AR-positive prostate cancer cells, raising the question of a possible role of AR in the structural stability of telomeric complexes. Consistent with this possibility, in the present study, we observed that the AR antagonist Casodex (bicalutamide) disrupted telomeric complexes in AR-positive LNCaP cells but not in AR-negative PC-3 cells. Immunofluorescent studies revealed colocalization of TIN2 and AR. Reciprocal immunoprecipitation studies showed association of AR with telomeric proteins. Furthermore, telomeric proteins were overexpressed in prostate cancer cells compared with normal prostate epithelial cells, and sucrose density gradient analysis showed co-sedimentation of AR with telomeric proteins in a shelterin-like mega complex. Together, these observations suggest an allosteric role of AR in telomere complex stability in prostate cancer cells and suggest that AR-antagonist Casodex-mediated cell death may be due to telomere complex disruption.


Assuntos
Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Antagonistas de Androgênios/farmacologia , Anilidas/farmacologia , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Nitrilas/farmacologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Androgênicos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Complexo Shelterina , Telômero/genética , Proteínas de Ligação a Telômeros/genética , Proteína 1 de Ligação a Repetições Teloméricas/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Compostos de Tosil/farmacologia , Células Tumorais Cultivadas , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
4.
J Cell Physiol ; 226(11): 2747-51, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21678403

RESUMO

Sam68 (Src-associated protein in mitosis 68 kDa) is a multifunctional protein, known to govern cellular signal transduction, transcription, RNA metabolism, proliferation, apoptosis, and HIV-1 replication. Although intrinsic mechanisms that modulate Sam68 function are beginning to emerge, the regulatory events contributing to its expression remain elusive. We previously reported that heat shock protein-22 (Hsp22) antagonizes Sam68 function in rev-response element (RRE)-mediated gene expression. We now demonstrate that Sam68 levels correlate inversely with Hsp22 in a variety of cells, including U87, Jurkat, 293T, and U-937. In U87 glioblastoma cells, which contained high levels of Hsp22 than other cell lines tested, Hsp22 knockdown dramatically increased both Sam68 mRNA and protein, altered cellular morphology, and enhanced cell proliferation. This heightened proliferation was associated with a sharp decrease in G(0) /G(1) and a corresponding increase in S and G(2) /M phases in exponentially growing cultures. The increased S phase population in turn correlated with enhanced expression of cell cycle regulatory proteins such as cyclin E, cyclin A, ribonucleotide reductase (RNR), and proliferating cell nuclear antigen (PCNA), which are required for the transition of cells from G(1) to S phase. Collectively, our results demonstrate for the first time that Hsp22 regulates Sam68 expression and the ratio of Sam68 to Hsp22 may determine the proliferative potential of glioblastoma cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Neoplasias Encefálicas/patologia , Proteínas de Ligação a DNA/biossíntese , Glioblastoma/patologia , Proteínas de Choque Térmico/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a RNA/biossíntese , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Glioblastoma/metabolismo , Proteínas de Choque Térmico/genética , Humanos , Chaperonas Moleculares , Proteínas Serina-Treonina Quinases/genética
5.
J Cell Physiol ; 226(7): 1889-96, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21506119

RESUMO

Although inactivation of the androgen receptor (AR) by androgen-ablation or anti-androgen treatment has been frontline therapy for disseminated prostate cancer for over 60 years, it is not curative because castration-resistant prostate cancer cells retain AR activity. Therefore, curative strategy should include targeted elimination of AR protein. Since AR binds to calmodulin (CaM), and since CaM-binding proteins are targets of calpain (Cpn)-mediated proteolysis, we studied the role of CaM and Cpn in AR breakdown in prostate cancer cells. Whereas the treatment of prostate cancer cells individually with anti-CaM drug or calcimycin, which increases intracellular Ca(++) and activates Cpn, led to minimal AR breakdown, combined treatment led to a precipitous decrease in AR protein levels. This decrease in AR protein occurred without noticeable changes in AR mRNA levels, suggesting an increase in AR protein turnover rather than inhibition of AR mRNA expression. Thus, CaM inactivation seems to sensitize AR to Cpn-mediated breakdown in prostate cancer cells. Consistent with this possibility, purified recombinant human AR (rhAR) underwent proteolysis in the presence of purified Cpn, and the addition of purified CaM to the incubation blocked rhAR proteolysis. Together, these observations demonstrate that AR is a Cpn target and AR-bound CaM plays an important role in protecting AR from Cpn-mediated breakdown in prostate cancer cells. These observations raise an intriguing possibility that anti-CaM drugs in combination with Cpn-activating agents may offer a curative strategy for the treatment of prostate cancer, which relies on AR for growth and survival.


Assuntos
Calmodulina/metabolismo , Calpaína/metabolismo , Neoplasias da Próstata/metabolismo , Processamento de Proteína Pós-Traducional , Receptores Androgênicos/metabolismo , Antineoplásicos/farmacologia , Calcimicina/farmacologia , Cálcio/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Calmodulina/antagonistas & inibidores , Calmodulina/genética , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Ionóforos/farmacologia , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Interferência de RNA , RNA Mensageiro/metabolismo , Receptores Androgênicos/genética , Proteínas Recombinantes/metabolismo , Sulfonamidas/farmacologia , Fatores de Tempo , Transfecção , Trifluoperazina/farmacologia
6.
J Cell Physiol ; 219(1): 94-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19062173

RESUMO

Epidemiological studies have shown that a diet rich in fruits and cruciferous vegetables is associated with a lower risk of prostate cancer. Indole-3-carbinol (I3C) and its dimeric product 3,3'-diindolylmethane (DIM) have been shown to exhibit anti-tumor activity both in vitro and in vivo. Recently, we have reported that a formulated DIM (B-DIM) induced apoptosis and inhibited growth, angiogenesis, and invasion of prostate cancer cells by regulating Akt, NF-kappaB, VEGF and the androgen receptor (AR) signaling pathway. However, the precise molecular mechanism(s) by which B-DIM inhibits prostate cancer cell growth and induces apoptosis have not been fully elucidated. Most importantly, it is not known how B-DIM affects cell cycle regulators and proteasome activity, which are critically involved in cell growth and apoptosis. In this study, we investigated the effects of B-DIM on proteasome activity and AR transactivation with respect to B-DIM-mediated cell cycle regulation and induction of apoptosis in both androgen-sensitive LNCaP and androgen-insensitive C4-2B prostate cancer cells. We believe that our results show for the first time the cell cycle-dependent effects of B-DIM on proliferation and apoptosis of synchronized prostate cancer cells progressing from G(1) to S phase. B-DIM inhibited this progression by induction of p27(Kip1) and down-regulation of AR. We also show for the first time that B-DIM inhibits proteasome activity in S phase, leading to the inactivation of NF-kappaB signaling and induction of apoptosis in LNCaP and C4-2B cells. These results suggest that B-DIM could be a potent agent for the prevention and/or treatment of both hormone sensitive as well as hormone-refractory prostate cancer.


Assuntos
Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Indóis/farmacologia , Neoplasias da Próstata/metabolismo , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p27 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Isoleucina/metabolismo , Masculino , Poli(ADP-Ribose) Polimerases/metabolismo , Neoplasias da Próstata/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Receptores Androgênicos/metabolismo
7.
BJU Int ; 103(1): 18-21, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19021605

RESUMO

Hyperoxaluria is a major risk factor for the formation of calcium oxalate stones, but dietary restriction of oxalate intake might not be a reliable approach to prevent recurrence of stones. Hence, other approaches to reduce urinary oxalate to manage stone disease have been explored. The gut-dwelling obligate anaerobe Oxalobacter formigenes (OF) has attracted attention for its oxalate-degrading property. In this review we critically evaluate published studies and identify major gaps in knowledge. Recurrent stone-formers are significantly less likely to be colonized with OF than controls, but this appears to be due to antibiotic use. Studies in animals and human subjects show that colonization of the gut with OF can decrease urinary oxalate levels. However, it remains to be determined whether colonization with OF can affect stone disease. Reliable methods are needed to detect and quantify colonization status and to achieve durable colonization. New information about oxalate transport mechanisms raises hope for pharmacological manipulation to decrease urinary oxalate levels. In addition, probiotic use of lactic acid bacteria that metabolize oxalate might provide a valid alternative to OF.


Assuntos
Hiperoxalúria/prevenção & controle , Cálculos Renais/prevenção & controle , Oxalatos/metabolismo , Oxalobacter formigenes/metabolismo , Humanos , Hiperoxalúria/complicações , Intestinos/microbiologia , Cálculos Renais/etiologia , Oxalobacter formigenes/fisiologia , Fatores de Risco
8.
Cancer Res ; 67(16): 7782-8, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17699783

RESUMO

Relapse of prostate cancer after androgen ablation therapy is hormone-refractory, with continued tumor growth being dependent on the androgen receptor (AR). E2F-1, a regulator of cell proliferation and viability, reportedly plays a role in the development of hormone-refractory prostate cancer. Thymoquinone is a component of Nigella sativa, an herb used for thousands of years for culinary and medicinal purposes in Asian and Middle Eastern countries and has been reported to have an antineoplastic effect both in vitro and in vivo. We observed that thymoquinone inhibited DNA synthesis, proliferation, and viability of cancerous (LNCaP, C4-B, DU145, and PC-3) but not noncancerous (BPH-1) prostate epithelial cells by down-regulating AR and E2F-1. In LNCaP cells, this was associated with a dramatic increase in p21(Cip1), p27(Kip1), and Bax. Thymoquinone blunted progression of synchronized LNCaP cells from G1 to S phase, with a concomitant decrease in AR and E2F-1 as well as the E2F-1-regulated proteins necessary for cell cycle progression. In a xenograft prostate tumor model, thymoquinone inhibited growth of C4-2B-derived tumors in nude mice. This in vivo suppression of tumor growth, as with C4-2B cell growth in culture, was associated with a dramatic decrease in AR, E2F-1, and cyclin A as determined by Western blot of tissue extracts. Tissue immunohistochemical staining confirmed a marked reduction in E2F-1 and showed induction of apoptosis on terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling assay. These findings show that thymoquinone suppresses the expression of AR and E2F-1 necessary for proliferation and viability of androgen-sensitive as well as androgen-independent prostate cancer cells both in vitro and in vivo and, moreover, produced no noticeable side effects in mice. We conclude that thymoquinone, a naturally occurring herbal product, may prove to be effective in treating hormone-sensitive as well as hormone-refractory prostate cancer. Furthermore, because of its selective effect on cancer cells, we believe that thymoquinone can also be used safely to help prevent the development of prostate cancer.


Assuntos
Antagonistas de Receptores de Andrógenos , Benzoquinonas/farmacologia , Fator de Transcrição E2F1/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Animais , Processos de Crescimento Celular , Linhagem Celular Tumoral , Fase G1/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Neoplasias Hormônio-Dependentes/metabolismo , Neoplasias Hormônio-Dependentes/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Fase S/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cancer Res ; 67(4): 1636-44, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17308104

RESUMO

Tumor growth and metastasis depend on angiogenesis that requires the cofactor copper. Consistently, high levels of copper have been found in many types of human cancers, including prostate, breast, colon, and lung. Recent studies suggest that copper could be used as a novel selective target for cancer therapies. Clioquinol is capable of forming stable complexes with copper and currently used in clinics for treatment of Alzheimer's disease. Most recently, it has been reported that clioquinol possesses antitumor effects. However, the underlying molecular mechanism is unclear. We report here that after binding to copper, clioquinol can inhibit the proteasomal chymotrypsin-like activity, repress androgen receptor (AR) protein expression, and induce apoptotic cell death in human prostate cancer LNCaP and C4-2B cells. In addition, clioquinol alone exhibits similar effects in prostate cancer cell lines with elevated copper at concentrations similar to those found in patients. Addition of dihydrotestosterone did not affect clioquinol-mediated proteasome inhibition in both prostate cancer cell lines. However, dihydrotestosterone partially inhibited clioquinol-induced AR suppression and apoptosis only in androgen-dependent LNCaP cells. Animal studies show that clioquinol treatment significantly inhibits the growth of human prostate tumor C4-2B xenografts (by 66%), associated with in vivo proteasome inhibition, AR protein repression, angiogenesis suppression, and apoptosis induction. Our study provides strong evidence that clioquinol is able to target tumor proteasome in vivo in a copper-dependent manner, resulting in formation of an active AR inhibitor and apoptosis inducer that is responsible for its observed antiprostate tumor effect.


Assuntos
Antagonistas de Receptores de Andrógenos , Apoptose/efeitos dos fármacos , Clioquinol/farmacologia , Cobre/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Inibidores de Proteases/farmacologia , Animais , Linhagem Celular Tumoral , Clioquinol/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias Hormônio-Dependentes/irrigação sanguínea , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Neoplasias Hormônio-Dependentes/metabolismo , Neoplasias Hormônio-Dependentes/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neoplasias da Próstata/irrigação sanguínea , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Inibidores de Proteases/metabolismo , Inibidores de Proteassoma , Ensaios Antitumorais Modelo de Xenoenxerto
10.
PLoS One ; 14(5): e0211090, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31083651

RESUMO

Telomere stability is important for cell viability, as cells with telomere DNA damage that is not repaired do not survive. We reported previously that androgen receptor (AR) antagonist induces telomere DNA damage in androgen-sensitive LNCaP prostate cancer cells; this triggers a DNA damage response (DDR) at telomeres that includes activation of ATM, and blocking ATM activation prevents telomere DNA repair and leads to cell death. Remarkably, AR antagonist induces telomere DNA damage and triggers ATM activation at telomeres also in 22Rv1 castration-resistant prostate cancer (CRPC) cells that are not growth inhibited by AR antagonist. Treatment with AR antagonist enzalutamide (ENZ) or ATM inhibitor (ATMi) by itself had no effect on growth in vitro or in vivo, but combined treatment with ENZ plus ATMi significantly inhibited cell survival in vitro and tumor growth in vivo. By inducing telomere DNA damage and activating a telomere DDR, an opportunity to inhibit DNA repair and promote cell death was created, even in CRPC cells. 22Rv1 cells express both full-length AR and AR splice variant AR-V7, but full-length AR was found to be the predominant form of AR associated with telomeres and required for telomere stability. Although 22Rv1 growth of untreated 22Rv1 cells appears to be driven by AR-V7, it is, ironically, expression of full-length AR that makes them sensitive to growth inhibition by combined treatment with ENZ plus ATMi. Notably, this combined treatment approach to induce telomere DNA damage and inhibit the DDR was effective in inducing cell death also in other CRPC cell lines (LNCaP/AR and C4-2B). Thus, the use of ENZ in combination with a DDR inhibitor, such as ATMi, may be effective in prolonging disease-free survival of patients with AR-positive metastatic CRPC, even those that co-express AR splice variant.


Assuntos
Dano ao DNA , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo , Estresse Fisiológico , Telômero/genética , Processamento Alternativo , Animais , Antineoplásicos/farmacologia , Morte Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Xenoenxertos , Humanos , Masculino , Camundongos , Neoplasias de Próstata Resistentes à Castração/patologia , Interferência de RNA , Receptores Androgênicos/genética
11.
J Cell Physiol ; 217(3): 569-76, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18726991

RESUMO

Since androgen receptor (AR) plays an important role in prostate cancer development and progression, androgen-ablation has been the frontline therapy for treatment of advanced prostate cancer even though it is rarely curative. A curative strategy should involve functional and structural elimination of AR from prostate cancer cells. We have previously reported that apoptosis induced by medicinal proteasome-inhibitory compound celastrol is associated with a decrease in AR protein levels. However celastrol-stimulated events contributing to this AR decrease have not been elucidated. Here, we report that a variety of chemotherapeutic agents, including proteasome inhibitors, a topoisomerase inhibitor, DNA-damaging agents and docetaxel that cause cell death, decrease AR levels in LNCaP prostate cancer cells. This decrease in AR protein levels was not due to the suppression of AR mRNA expression in these cells. We observed that a proteolytic activity residing in cytosol of prostate cancer cells is responsible for AR breakdown and that this proteolytic activity was stimulated upon induction of apoptosis. Interestingly, proteasome inhibitor celastrol- and chemotherapeutic drug VP-16-stimulated AR breakdown was attenuated by calpain inhibitors calpastatin and N-acetyl-L-leucyl-L-leucyl-L-methioninal. Furthermore, AR proteolytic activity pulled down by calmodulin-agarose beads from celastrol-treated PC-3 cells showed immunoreactivity to a calpain antibody. Taken together, these results demonstrate calpain involvement in proteasome inhibitor-induced AR breakdown, and suggest that AR degradation is intrinsic to the induction of apoptosis in prostate cancer cells.


Assuntos
Apoptose , Calpaína/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Apoptose/efeitos dos fármacos , Calmodulina/metabolismo , Linhagem Celular Tumoral , Sistema Livre de Células , Citosol/efeitos dos fármacos , Citosol/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína Vmw65 do Vírus do Herpes Simples/farmacologia , Humanos , Masculino , Peso Molecular , Triterpenos Pentacíclicos , Fragmentos de Peptídeos/metabolismo , Inibidores de Proteases/farmacologia , Ligação Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Receptores Androgênicos/genética , Triterpenos/farmacologia
12.
Cancer Res ; 66(24): 11754-62, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17178871

RESUMO

Chemotherapy of prostate cancer targets androgen receptor (AR) by androgen ablation or antiandrogens, but unfortunately, it is not curative. Our attack on prostate cancer envisions the proteolytic elimination of AR, which requires a fuller understanding of AR turnover. We showed previously that calmodulin (CaM) binds to AR with important consequences for AR stability and function. To examine the involvement of Ca(2+)/CaM in the proteolytic breakdown of AR, we analyzed LNCaP cell extracts that bind to a CaM affinity column for the presence of low molecular weight forms of AR (intact AR size, approximately 114 kDa). Using an antibody directed against the NH(2)-terminal domain (ATD) of AR on Western blots, we identified approximately 76-kDa, approximately 50-kDa, and 34/31-kDa polypeptides in eluates of CaM affinity columns, suggesting the presence of CaM-binding sites within the 31/34-kDa ATD of AR. Under cell-free conditions in the presence of phenylmethylsulfonyl fluoride, AR underwent Ca(2+)-dependent degradation. AR degradation was inhibited by N-acetyl-leu-leu-norleu, an inhibitor of thiol proteases, suggesting the involvement of calpain. In intact cells, AR breakdown was accelerated by raising intracellular Ca(2+) using calcimycin, and increased AR breakdown was reversed with the cell-permeable Ca(2+) chelator bis-(O-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetra-(acetoxymethyl)-ester. In CaM affinity chromatography studies, the Ca(2+)-dependent protease calpain was bound to and eluted from the CaM-agarose column along with AR. Caspase-3, which plays a role in AR turnover under stress conditions, did not bind to the CaM column and was present in the proenzyme form. Similarly, AR immunoprecipitates prepared from whole-cell extracts of exponentially growing LNCaP cells contained both calpain and calpastatin. Nuclear levels of calpain and calpastatin (its endogenous inhibitor) changed in a reciprocal fashion as synchronized LNCaP cells progressed from G(1) to S phase. These reciprocal changes correlated with changes in AR level, which increased in late G(1) phase and decreased as S phase progressed. Taken together, these observations suggest potential involvement of AR-bound CaM in calcium-controlled, calpain-mediated breakdown of AR in prostate cancer cells.


Assuntos
Cálcio/fisiologia , Calmodulina/fisiologia , Calpaína/metabolismo , Receptores Androgênicos/fisiologia , Antagonistas de Androgênios/uso terapêutico , Calcimicina/farmacologia , Calmodulina/isolamento & purificação , Linhagem Celular Tumoral , Núcleo Celular/fisiologia , Quelantes/farmacologia , Cromatografia de Afinidade , Citoplasma/fisiologia , Humanos , Ionóforos/farmacologia , Isoleucina/deficiência , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/fisiopatologia , Receptores Androgênicos/efeitos da radiação , Transdução de Sinais , Raios Ultravioleta
13.
Cancer Res ; 62(9): 2488-92, 2002 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-11980638

RESUMO

Resveratrol has an apoptotic effect on a variety of cancer cells. Changes in cell cycle regulatory processes contributing to the antiproliferative effect of resveratrol remain largely unknown. Our studies revealed that, in androgen-sensitive LNCaP cells, the effect of resveratrol on DNA synthesis varied dramatically depending on the concentration and the duration of treatment. In 1-h-treated cells, resveratrol showed only an inhibitory effect on DNA synthesis, which increased with increasing concentration (IC50 = 20 microM). However, when treatment duration was extended to 24 h, we observed a dual effect of resveratrol on DNA synthesis. At 5 to 10 microM it caused a 2- to 3-fold increase in DNA synthesis, and at > or =15 microM, it inhibited DNA synthesis. The increase in DNA synthesis was seen only in LNCaP cells, but not in androgen-independent DU145 prostate cancer cells or in NIH3T3 fibroblast cells. The resveratrol-induced increase in DNA synthesis was associated with enrichment of LNCaP cells in S phase, and a concurrent decrease in nuclear p21Cipl and p27Kip1 levels. Furthermore, consistent with the entry of LNCaP cells into S phase, there was a dramatic increase in nuclear Cdk2 activity associated with both cyclin A and cyclin E. Taken together, our observations indicate that LNCaP cells, treated with resveratrol, are induced to enter into S phase, but subsequent progression through S phase is limited by the inhibitory effect of resveratrol on DNA synthesis, particularly at concentrations above 15 microM. Therefore, this unique ability of resveratrol to exert opposing effects on two important processes in cell cycle progression, induction of S phase and inhibition of DNA synthesis, may be responsible for its apoptotic and antiproliferative effects.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Quinases relacionadas a CDC2 e CDC28 , DNA de Neoplasias/antagonistas & inibidores , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Fase S/efeitos dos fármacos , Estilbenos/farmacologia , Androgênios/fisiologia , Animais , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/efeitos dos fármacos , Ciclina A/metabolismo , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p21 , Inibidor de Quinase Dependente de Ciclina p27 , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , DNA de Neoplasias/biossíntese , Humanos , Masculino , Camundongos , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Neoplasias Hormônio-Dependentes/metabolismo , Neoplasias Hormônio-Dependentes/patologia , Neoplasias da Próstata/tratamento farmacológico , Proteínas Serina-Treonina Quinases/metabolismo , Resveratrol , Proteínas Supressoras de Tumor/metabolismo
14.
Exp Hematol ; 30(7): 792-800, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12135678

RESUMO

OBJECTIVE: Subsetting of Hoechst 33342 dull (Ho(dull)) hematopoietic stem cells on the basis of rhodamine 123 (Rh) efflux utilizing an improved dual-dye efflux strategy resolves Ho(dull)/Rh(dull) stem cell subsets that differ with regard to their rate of recruitment and progression through the cell cycle upon exposure to cytokines. MATERIALS AND METHODS: Murine bone marrow cells were isolated by negative immunomagnetic selection using lineage-directed antibodies followed by Ho and Rh staining using a dual-dye efflux method. RESULTS: Ho(dull)/Rh(dull) stem cells that efflux Rh more efficiently (R1) exhibit a 4- to 8-hour delay in progression to S phase when stimulated by interleukin-3 (IL-3), IL-6, IL-11, and stem cell factor (SCF) compared to Ho(dull)/Rh(medium) stem cells, which retain low levels of Rh (R2). R1 and R2 cells show a hierarchical entry into S phase upon exposure to any or all of these cytokines. The R1 subset contains proportionately more high proliferative potential colony-forming cells than the R2 subset, but equivalent levels of engraftable stem cells at 3 and 8 weeks after competitive transplantation. Both R1 and R2 cells express c-kit, IL-3R, and IL-11R, whereas IL-6R and c-fms are only expressed by R1 or R2 cells, respectively. Cytokine stimulation of R1 and R2 cells induced cell cycle progression with elevated or induced expression of c-kit, c-fms, IL-2R, and IL-6R. CONCLUSION: These studies indicate that primitive marrow stem cells can be further subsetted by degree of Rh staining to reveal important functional phenotypic differences between cells with different levels of Rh staining.


Assuntos
Benzimidazóis/análise , Citocinas/farmacologia , Corantes Fluorescentes/análise , Fase G1/fisiologia , Células-Tronco Hematopoéticas/classificação , Receptores de Citocinas/efeitos dos fármacos , Rodamina 123/análise , Fase S/fisiologia , Animais , Benzimidazóis/metabolismo , Transporte Biológico , Biomarcadores , Células da Medula Óssea/classificação , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Linhagem da Célula , Ensaio de Unidades Formadoras de Colônias , Feminino , Corantes Fluorescentes/metabolismo , Sobrevivência de Enxerto , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Separação Imunomagnética , Interleucina-11/farmacologia , Subunidade alfa de Receptor de Interleucina-11 , Interleucina-3/farmacologia , Interleucina-6/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-kit/biossíntese , Proteínas Proto-Oncogênicas c-kit/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/biossíntese , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptores de Citocinas/biossíntese , Receptores de Citocinas/genética , Receptores de Interleucina/biossíntese , Receptores de Interleucina/efeitos dos fármacos , Receptores de Interleucina/genética , Receptores de Interleucina-11 , Receptores de Interleucina-2/biossíntese , Receptores de Interleucina-2/genética , Receptores de Interleucina-3/biossíntese , Receptores de Interleucina-3/efeitos dos fármacos , Receptores de Interleucina-3/genética , Receptores de Interleucina-6/biossíntese , Receptores de Interleucina-6/efeitos dos fármacos , Receptores de Interleucina-6/genética , Rodamina 123/metabolismo , Fator de Células-Tronco/farmacologia , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos
15.
Oncotarget ; 6(8): 6136-50, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25704883

RESUMO

There is a critical need for therapeutic agents that can target the amino-terminal domain (NTD) of androgen receptor (AR) for the treatment of castration-resistant prostate cancer (CRPC). Calmodulin (CaM) binds to the AR NTD and regulates AR activity. We discovered that Hydrazinobenzoylcurcumin (HBC), which binds exclusively to CaM, inhibited AR activity. HBC abrogated AR interaction with CaM, suppressed phosphorylation of AR Serine81, and blocked the binding of AR to androgen-response elements. RNA-Seq analysis identified 57 androgen-regulated genes whose expression was significantly (p ≤ 0.002) altered in HBC treated cells as compared to controls. Oncomine analysis revealed that genes repressed by HBC are those that are usually overexpressed in prostate cancer (PCa) and genes stimulated by HBC are those that are often down-regulated in PCa, suggesting a reversing effect of HBC on androgen-regulated gene expression associated with PCa. Ingenuity Pathway Analysis revealed a role of HBC affected genes in cellular functions associated with proliferation and survival. HBC was readily absorbed into the systemic circulation and inhibited the growth of xenografted CRPC tumors in nude mice. These observations demonstrate that HBC inhibits AR activity by targeting the AR NTD and suggest potential usefulness of HBC for effective treatment of CRPC.


Assuntos
Curcumina/análogos & derivados , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Pirazóis/farmacologia , Receptores Androgênicos/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Curcumina/farmacologia , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Nus , Células NIH 3T3 , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Aging (Albany NY) ; 5(1): 3-17, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23363843

RESUMO

Telomeres protect the ends of linear chromosomes from being recognized as damaged DNA, and telomere stability is required for genome stability. Here we demonstrate that telomere stability in androgen receptor (AR)-positive LNCaP human prostate cancer cells is dependent on AR and androgen, as AR inactivation by AR antagonist bicalutamide (Casodex), AR-knockdown, or androgen-depletion caused telomere dysfunction, and the effect of androgen-depletion or Casodex was blocked by the addition of androgen. Notably, neither actinomycin D nor cycloheximide blocked the DNA damage response to Casodex, indicating that the role of AR in telomere stability is independent of its role in transcription. We also demonstrate that AR is a component of telomeres, as AR-bound chromatin contains telomeric DNA, and telomeric chromatin contains AR. Importantly, AR inactivation by Casodex caused telomere aberrations, including multiple abnormal telomere signals, remindful of a fragile telomere phenotype that has been described previously to result from defective telomere DNA replication. We suggest that AR plays an important role in telomere stability and replication of telomere DNA in prostate cancer cells, and that AR inactivation-mediated telomere dysfunction may contribute to genomic instability and progression of prostate cancer cells.


Assuntos
Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Telômero/metabolismo , Antagonistas de Androgênios/farmacologia , Anilidas/farmacologia , Linhagem Celular Tumoral , Cromatina/metabolismo , Humanos , Masculino , Nitrilas/farmacologia , Compostos de Tosil/farmacologia , Transcrição Gênica
17.
PLoS One ; 8(2): e56692, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437213

RESUMO

BACKGROUND: The androgen receptor (AR) plays a critical role in the proliferation of prostate cancer cells. However, its mechanism of action in proliferation remains unknown. An understanding of the mechanism of AR action in proliferation may lead to the development of effective strategies for the treatment of prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS: In this study we report that pulse treatment of synchronized LNCaP cells with Casodex, an AR-antagonist, for 4 hours in mid-G(1) phase was sufficient to prevent cells from entering S phase. Since the assembly of pre-replication complex (pre-RC) in G(1) is required for the progression of cells from G(1) to S phase, the effect of Casodex during mid-G(1) suggested that the role of AR in proliferation might be to regulate the assembly of pre-RC. To test this possibility, we investigated the interaction between AR and Cdc6, an essential component of pre-RC in LNCaP cells. AR co-localized and co-immunoprecipitated with Cdc6, and Casodex treatment disrupted this interaction. AR-immunoprecipitate (AR-IP) also contained cyclin E and cyclin A, which play a critical role in pre-RC assembly and cell cycle entry into S phase, and DNA polymerase-α, PCNA, and ribonucleotide reductase, which are essential for the initiation of DNA synthesis. In addition, in cells in S phase, AR co-sedimented with components of the DNA replication machinery of cells that entered S phase. CONCLUSIONS/SIGNIFICANCE: Together, these observations suggest a novel role of AR as a component of the pre-RC to exert control over progression of LNCaP cells from G(1) to S phase through a mechanism that is independent of its role as a transcription factor.


Assuntos
Antagonistas de Receptores de Andrógenos/administração & dosagem , Anilidas/administração & dosagem , Transformação Celular Neoplásica/efeitos dos fármacos , Nitrilas/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/genética , Compostos de Tosil/administração & dosagem , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina A/metabolismo , Ciclina E/metabolismo , Replicação do DNA/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Masculino , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo
18.
PLoS One ; 7(4): e34875, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22493721

RESUMO

BACKGROUND: The identification of a blood-based diagnostic marker is a goal in many areas of medicine, including the early diagnosis of prostate cancer. We describe the use of averaged differential display as an efficient mechanism for biomarker discovery in whole blood RNA. The process of averaging reduces the problem of clinical heterogeneity while simultaneously minimizing sample handling. METHODOLOGY/PRINCIPAL FINDINGS: RNA was isolated from the blood of prostate cancer patients and healthy controls. Samples were pooled and subjected to the averaged differential display process. Transcripts present at different levels between patients and controls were purified and sequenced for identification. Transcript levels in the blood of prostate cancer patients and controls were verified by quantitative RT-PCR. Means were compared using a t-test and a receiver-operating curve was generated. The Ring finger protein 19A (RNF19A) transcript was identified as having higher levels in prostate cancer patients compared to healthy men through the averaged differential display process. Quantitative RT-PCR analysis confirmed a more than 2-fold higher level of RNF19A mRNA levels in the blood of patients with prostate cancer than in healthy controls (p = 0.0066). The accuracy of distinguishing cancer patients from healthy men using RNF19A mRNA levels in blood as determined by the area under the receiving operator curve was 0.727. CONCLUSIONS/SIGNIFICANCE: Averaged differential display offers a simplified approach for the comprehensive screening of body fluids, such as blood, to identify biomarkers in patients with prostate cancer. Furthermore, this proof-of-concept study warrants further analysis of RNF19A as a clinically relevant biomarker for prostate cancer detection.


Assuntos
Adenocarcinoma/genética , Biomarcadores Tumorais/genética , Neoplasias da Próstata/genética , RNA Mensageiro/sangue , Ubiquitina-Proteína Ligases/genética , Adenocarcinoma/sangue , Adenocarcinoma/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Estudos de Casos e Controles , Diagnóstico Precoce , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Próstata , Neoplasias da Próstata/sangue , Neoplasias da Próstata/diagnóstico , Curva ROC , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Ubiquitina-Proteína Ligases/sangue
19.
Cancer Res ; 70(13): 5203-6, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20587531

RESUMO

Cancer continues to be a major cause of mortality despite decades of effort and expense. The problem reviewed here is that before many cancers are discovered they have already progressed to become drug resistant or metastatic. Biomarkers found in blood or other body fluids could supplement current clinical indicators to permit earlier detection and thereby reduce cancer mortality.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias/diagnóstico , Biomarcadores Tumorais/metabolismo , Diagnóstico Precoce , Humanos , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA