Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Proteome Res ; 19(5): 2053-2070, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32285670

RESUMO

The mechanisms whereby Mycobacterium tuberculosis (Mtb) rewires the host metabolism in vivo are surprisingly unexplored. Here, we used three high-resolution mass spectrometry platforms to track altered lung metabolic changes associated with Mtb infection of mice. The multiplatform data sets were merged using consensus orthogonal partial least squares-discriminant analysis (cOPLS-DA), an algorithm that allows for the joint interpretation of the results from a single multivariate analysis. We show that Mtb infection triggers a temporal and progressive catabolic state to satisfy the continuously changing energy demand to control infection. This causes dysregulation of metabolic and oxido-reductive pathways culminating in Mtb-associated wasting. Notably, high abundances of trimethylamine-N-oxide (TMAO), produced by the host from the bacterial metabolite trimethylamine upon infection, suggest that Mtb could exploit TMAO as an electron acceptor under anaerobic conditions. Overall, these new pathway alterations advance our understanding of the link between Mtb pathogenesis and metabolic dysregulation and could serve as a foundation for new therapeutic intervention strategies. Mass spectrometry data has been deposited in the Metabolomics Workbench repository (data-set identifier: ST001328).


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Pulmão , Espectrometria de Massas , Metaboloma , Camundongos
2.
Commun Biol ; 7(1): 45, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182666

RESUMO

Accurate lipid annotation is crucial for understanding the role of lipids in health and disease and identifying therapeutic targets. However, annotating the wide variety of lipid species in biological samples remains challenging in untargeted lipidomic studies. In this work, we present a lipid annotation workflow based on LC-MS and MS/MS strategies, the combination of four bioinformatic tools, and a decision tree to support the accurate annotation and semi-quantification of the lipid species present in lung tissue from control mice. The proposed workflow allowed us to generate a lipid lung-based ATLAS (LiLA), which was then employed to unveil the lipidomic signatures of the Mycobacterium tuberculosis infection at two different time points for a deeper understanding of the disease progression. This workflow, combined with manual inspection strategies of MS/MS data, can enhance the annotation process for lipidomic studies and guide the generation of sample-specific lipidome maps. LiLA serves as a freely available data resource that can be employed in future studies to address lipidomic alterations in mice lung tissue.


Assuntos
Ascomicetos , Espectrometria de Massas em Tandem , Animais , Camundongos , Fluxo de Trabalho , Biologia Computacional , Lipídeos
3.
Nat Commun ; 14(1): 5472, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37673914

RESUMO

Mycobacterium tuberculosis (Mtb) disrupts glycolytic flux in infected myeloid cells through an unclear mechanism. Flux through the glycolytic pathway in myeloid cells is inextricably linked to the availability of NAD+, which is maintained by NAD+ salvage and lactate metabolism. Using lung tissue from tuberculosis (TB) patients and myeloid deficient LDHA (LdhaLysM-/-) mice, we demonstrate that glycolysis in myeloid cells is essential for protective immunity in TB. Glycolytic myeloid cells are essential for the early recruitment of multiple classes of immune cells and IFNγ-mediated protection. We identify NAD+ depletion as central to the glycolytic inhibition caused by Mtb. Lastly, we show that the NAD+ precursor nicotinamide exerts a host-dependent, antimycobacterial effect, and that nicotinamide prophylaxis and treatment reduce Mtb lung burden in mice. These findings provide insight into how Mtb alters host metabolism through perturbation of NAD(H) homeostasis and reprogramming of glycolysis, highlighting this pathway as a potential therapeutic target.


Assuntos
NAD , Tuberculose , Animais , Camundongos , Homeostase , Células Mieloides , Niacinamida/farmacologia , Glicólise , Lactato Desidrogenase 5
4.
Redox Biol ; 52: 102316, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35489241

RESUMO

Mycobacterium tuberculosis (Mtb) senses and responds to host-derived gasotransmitters NO and CO via heme-containing sensor kinases DosS and DosT and the response regulator DosR. Hydrogen sulfide (H2S) is an important signaling molecule in mammals, but its role in Mtb physiology is unclear. We have previously shown that exogenous H2S can modulate expression of genes in the Dos dormancy regulon via an unknown mechanism(s). Here, we test the hypothesis that Mtb senses and responds to H2S via the DosS/T/R system. Using UV-Vis and EPR spectroscopy, we show that H2S binds directly to the ferric (Fe3+) heme of DosS (KDapp = 5.30 µM) but not the ferrous (Fe2+) form. No interaction with DosT(Fe2+-O2) was detected. We found that the binding of sulfide can slowly reduce the DosS heme iron to the ferrous form. Steered Molecular Dynamics simulations show that H2S, and not the charged HS- species, can enter the DosS heme pocket. We also show that H2S increases DosS autokinase activity and subsequent phosphorylation of DosR, and H2S-mediated increases in Dos regulon gene expression is lost in Mtb lacking DosS. Finally, we demonstrate that physiological levels of H2S in macrophages can induce DosR regulon genes via DosS. Overall, these data reveal a novel mechanism whereby Mtb senses and responds to a third host gasotransmitter, H2S, via DosS(Fe3+). These findings highlight the remarkable plasticity of DosS and establish a new paradigm for how bacteria can sense multiple gasotransmitters through a single heme sensor kinase.


Assuntos
Gasotransmissores , Mycobacterium tuberculosis , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácido Dioctil Sulfossuccínico/metabolismo , Gasotransmissores/metabolismo , Regulação Bacteriana da Expressão Gênica , Heme/metabolismo , Ferro/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Protamina Quinase/química , Protamina Quinase/genética , Protamina Quinase/metabolismo , Regulon
5.
Indian J Med Res ; 132: 176-88, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20716818

RESUMO

BACKGROUND & OBJECTIVES: Drug efflux pumps have been contributing factor(s) in the development of multidrug resistance in various clinically relevant bacteria. During efflux pump gene expression studies on mycobacteria, we have found a previously uncharacterized open reading frame (ORF) Rv2459 to be overexpressed in drug stressed conditions. The objective of the present study was to investigate the role of this ORF as a drug efflux pump, which might add new information in our understanding about the alternative mechanisms of drug resistance in mycobacteria. METHODS: The open reading frame Rv2459 of Mycobacterium tuberculosis encoding a probable drug efflux protein has been cloned using pSD5 E.coli-Mycobacterium shuttle vector and overexpressed in M. tuberculosis H(37)Rv. This ORF was named as jefA. Overexpression of this gene in clones has been verified by real-time reverse transcription PCR. Minimum inhibitory concentrations (MICs) of recombinant as well as non-recombinant clones were determined by resazurin microtitre assay plate method (REMA) with and without efflux pump inhibitors carbonyl cyanide m-chlorophenylhydrazone (CCCP) and verapamil. RESULTS: In recombinant strains of M. tuberculosis, the overexpression of this gene led to an increase in MIC of anti-tubercular drugs isoniazid and ethambutol when tested by REMA. In the presence of CCCP and verapamil, the recombinant strains showed decrease in MIC for these drugs. Bioinformatic analysis has shown a close relation of JefA protein with drug efflux pumps of other clinically relevant bacteria. In homology derived structure prepared from nearest available model, it was observed that amino acids forming TMH 1, 8 and 11 participated in ethambutol specificity and those forming TMH 2, 7 and 10 participated in isoniazid specificity in JefA. INTERPRETATION & CONCLUSION: The increased transcription of jefA leads to increased resistance to ethambutol and isoniazid in M. tuberculosis via efflux pump like mechanism and contributes in the development of resistance to these drugs. JefA amino acid sequence is well conserved among clinically important bacterial genera, which further provides evidence of being a potent drug efflux pump. The involvement in drug resistance and very little homology with any of the human proteins makes JefA important to be included in the list of potential drug targets.


Assuntos
Proteínas de Bactérias/fisiologia , Resistência Microbiana a Medicamentos/genética , Proteínas de Membrana Transportadoras/fisiologia , Modelos Moleculares , Mycobacterium tuberculosis/genética , Filogenia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Clonagem Molecular , Análise por Conglomerados , Biologia Computacional , Primers do DNA/genética , Etambutol , Isoniazida , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
6.
Methods Mol Biol ; 2184: 161-184, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32808225

RESUMO

Metabolism plays an important role in the activation and effector functions of macrophages. Intracellular pathogens, such as Mycobacterium tuberculosis, subvert the immune functions of macrophages to establish an infection by modulating the metabolism of the macrophage. Here, we describe how the Seahorse Extracellular Flux Analyzer (XF) from Agilent Technologies can be used to study the changes in the bioenergetic metabolism of the macrophages induced by infection with mycobacteria. The XF simultaneously measures the oxygen consumption and extracellular acidification of the macrophages noninvasively in real time, and together with the addition of metabolic modulators, substrates, and inhibitors enables measurements of the rates of oxidative phosphorylation, glycolysis, and ATP production.


Assuntos
Metabolismo Energético/fisiologia , Macrófagos/microbiologia , Macrófagos/fisiologia , Mycobacterium tuberculosis/patogenicidade , Tuberculose/microbiologia , Tuberculose/fisiopatologia , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Glicólise/fisiologia , Humanos , Metaboloma/fisiologia , Metabolômica/métodos , Camundongos , Fosforilação Oxidativa , Consumo de Oxigênio/fisiologia , Células RAW 264.7 , Células THP-1
7.
Front Cell Infect Microbiol ; 10: 586923, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330130

RESUMO

For centuries, hydrogen sulfide (H2S) was considered primarily as a poisonous gas and environmental hazard. However, with the discovery of prokaryotic and eukaryotic enzymes for H2S production, breakdown, and utilization, H2S has emerged as an important signaling molecule in a wide range of physiological and pathological processes. Hence, H2S is considered a gasotransmitter along with nitric oxide (•NO) and carbon monoxide (CO). Surprisingly, despite having overlapping functions with •NO and CO, the role of host H2S in microbial pathogenesis is understudied and represents a gap in our knowledge. Given the numerous reports that followed the discovery of •NO and CO and their respective roles in microbial pathogenesis, we anticipate a rapid increase in studies that further define the importance of H2S in microbial pathogenesis, which may lead to new virulence paradigms. Therefore, this review provides an overview of sulfide chemistry, enzymatic production of H2S, and the importance of H2S in metabolism and immunity in response to microbial pathogens. We then describe our current understanding of the role of host-derived H2S in tuberculosis (TB) disease, including its influences on host immunity and bioenergetics, and on Mycobacterium tuberculosis (Mtb) growth and survival. Finally, this review discusses the utility of H2S-donor compounds, inhibitors of H2S-producing enzymes, and their potential clinical significance.


Assuntos
Sulfeto de Hidrogênio , Mycobacterium tuberculosis , Tuberculose , Monóxido de Carbono , Humanos , Óxido Nítrico
8.
Nat Commun ; 11(1): 557, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992699

RESUMO

Hydrogen sulfide (H2S) is involved in numerous pathophysiological processes and shares overlapping functions with CO and •NO. However, the importance of host-derived H2S in microbial pathogenesis is unknown. Here we show that Mtb-infected mice deficient in the H2S-producing enzyme cystathionine ß-synthase (CBS) survive longer with reduced organ burden, and that pharmacological inhibition of CBS reduces Mtb bacillary load in mice. High-resolution respirometry, transcriptomics and mass spectrometry establish that H2S stimulates Mtb respiration and bioenergetics predominantly via cytochrome bd oxidase, and that H2S reverses •NO-mediated inhibition of Mtb respiration. Further, exposure of Mtb to H2S regulates genes involved in sulfur and copper metabolism and the Dos regulon. Our results indicate that Mtb exploits host-derived H2S to promote growth and disease, and suggest that host-directed therapies targeting H2S production may be potentially useful for the management of tuberculosis and other microbial infections.


Assuntos
Sulfeto de Hidrogênio/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidade , Animais , Cobre/metabolismo , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Citocinas/sangue , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Feminino , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Homeostase , Pulmão/patologia , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/genética , Células RAW 264.7 , Regulon , Enxofre/metabolismo , Transcriptoma , Tuberculose
9.
Antioxid Redox Signal ; 28(6): 431-444, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28791878

RESUMO

SIGNIFICANCE: L-ergothioneine is synthesized in actinomycetes, cyanobacteria, methylobacteria, and some fungi. In contrast to other low-molecular-weight redox buffers, glutathione and mycothiol, ergothioneine is primarily present as a thione rather than a thiol at physiological pH, which makes it resistant to autoxidation. Ergothioneine regulates microbial physiology and enables the survival of microbes under stressful conditions encountered in their natural environments. In particular, ergothioneine enables pathogenic microbes, such as Mycobacterium tuberculosis (Mtb), to withstand hostile environments within the host to establish infection. Recent Advances: Ergothioneine has been reported to maintain bioenergetic homeostasis in Mtb and protect Mtb against oxidative stresses, thereby enhancing the virulence of Mtb in a mouse model. Furthermore, ergothioneine augments the resistance of Mtb to current frontline anti-TB drugs. Recently, an opportunistic fungus, Aspergillus fumigatus, which infects immunocompromised individuals, has been found to produce ergothioneine, which is important in conidial health and germination, and contributes to the fungal resistance against redox stresses. CRITICAL ISSUES: The molecular mechanisms of the functions of ergothioneine in microbial physiology and pathogenesis are poorly understood. It is currently not known if ergothioneine is used in detoxification or antioxidant enzymatic pathways. As ergothioneine is involved in bioenergetic and redox homeostasis and antibiotic susceptibility of Mtb, it is of utmost importance to advance our understanding of these mechanisms. FUTURE DIRECTIONS: A clear understanding of the role of ergothioneine in microbes will advance our knowledge of how this thione enhances microbial virulence and resistance to the host's defense mechanisms to avoid complete eradication. Antioxid. Redox Signal. 28, 431-444.


Assuntos
Antioxidantes/metabolismo , Ergotioneína/metabolismo , Mycobacterium tuberculosis/metabolismo , Estresse Oxidativo/genética , Homeostase/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Mycobacterium tuberculosis/patogenicidade , Oxirredução , Virulência/genética
10.
Pathog Dis ; 76(5)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29873719

RESUMO

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, encounters variable and hostile environments within the host. A major component of these hostile conditions is reductive and oxidative stresses induced by factors modified by the host immune response, such as oxygen tension, NO or CO gases, reactive oxygen and nitrogen intermediates, the availability of different carbon sources and changes in pH. It is therefore essential for Mtb to continuously monitor and appropriately respond to the microenvironment. To this end, Mtb has developed various redox-sensitive systems capable of monitoring its intracellular redox environment and coordinating a response essential for virulence. Various aspects of Mtb physiology are regulated by these systems, including drug susceptibility, secretion systems, energy metabolism and dormancy. While great progress has been made in understanding the mechanisms and pathways that govern the response of Mtb to the host's redox environment, many questions in this area remain unanswered. The answers to these questions are promising avenues for addressing the tuberculosis crisis.


Assuntos
Interações Hospedeiro-Patógeno , Mycobacterium tuberculosis/patogenicidade , Tuberculose/fisiopatologia , Adaptação Fisiológica , Animais , Humanos , Mycobacterium tuberculosis/fisiologia , Oxirredução , Estresse Fisiológico , Tuberculose/imunologia , Tuberculose/microbiologia
11.
Cell Rep ; 25(7): 1938-1952.e5, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30428359

RESUMO

Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that controls inflammatory responses and redox homeostasis; however, its role during pulmonary tuberculosis (TB) remains unclear. Using freshly resected human TB lung tissue, we examined the role of HO-1 within the cellular and pathological spectrum of TB. Flow cytometry and histopathological analysis of human TB lung tissues showed that HO-1 is expressed primarily in myeloid cells and that HO-1 levels in these cells were directly proportional to cytoprotection. HO-1 mitigates TB pathophysiology by diminishing myeloid cell-mediated oxidative damage caused by reactive oxygen and/or nitrogen intermediates, which control granulocytic karyorrhexis to generate a zonal HO-1 response. Using whole-body or myeloid-specific HO-1-deficient mice, we demonstrate that HO-1 is required to control myeloid cell infiltration and inflammation to protect against TB progression. Overall, this study reveals that zonation of HO-1 in myeloid cells modulates free-radical-mediated stress, which regulates human TB immunopathology.


Assuntos
Radicais Livres/metabolismo , Heme Oxigenase-1/metabolismo , Tuberculose/imunologia , Tuberculose/patologia , Animais , Arginase/metabolismo , Linfócitos T CD4-Positivos/imunologia , Citocinas/metabolismo , Granuloma/patologia , Heme Oxigenase-1/deficiência , Humanos , Inflamação/patologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/fisiologia , Células Mieloides/enzimologia , Fator 2 Relacionado a NF-E2/metabolismo , Neutrófilos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Tuberculose/enzimologia , Tuberculose/microbiologia
12.
Front Immunol ; 9: 860, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29774023

RESUMO

Iron is an essential factor for the growth and virulence of Mycobacterium tuberculosis (Mtb). However, little is known about the mechanisms by which the host controls iron availability during infection. Since ferritin heavy chain (FtH) is a major intracellular source of reserve iron in the host, we hypothesized that the lack of FtH would cause dysregulated iron homeostasis to exacerbate TB disease. Therefore, we used knockout mice lacking FtH in myeloid-derived cell populations to study Mtb disease progression. We found that FtH plays a critical role in protecting mice against Mtb, as evidenced by increased organ burden, extrapulmonary dissemination, and decreased survival in Fth-/- mice. Flow cytometry analysis showed that reduced levels of FtH contribute to an excessive inflammatory response to exacerbate disease. Extracellular flux analysis showed that FtH is essential for maintaining bioenergetic homeostasis through oxidative phosphorylation. In support of these findings, RNAseq and mass spectrometry analyses demonstrated an essential role for FtH in mitochondrial function and maintenance of central intermediary metabolism in vivo. Further, we show that FtH deficiency leads to iron dysregulation through the hepcidin-ferroportin axis during infection. To assess the clinical significance of our animal studies, we performed a clinicopathological analysis of iron distribution within human TB lung tissue and showed that Mtb severely disrupts iron homeostasis in distinct microanatomic locations of the human lung. We identified hemorrhage as a major source of metabolically inert iron deposition. Importantly, we observed increased iron levels in human TB lung tissue compared to healthy tissue. Overall, these findings advance our understanding of the link between iron-dependent energy metabolism and immunity and provide new insight into iron distribution within the spectrum of human pulmonary TB. These metabolic mechanisms could serve as the foundation for novel host-directed strategies.


Assuntos
Apoferritinas/imunologia , Ferro/metabolismo , Pulmão/patologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/imunologia , Animais , Apoferritinas/genética , Apoferritinas/metabolismo , Estudos de Casos e Controles , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/microbiologia , Metabolismo Energético/imunologia , Feminino , Ferritinas , Voluntários Saudáveis , Hepcidinas/metabolismo , Humanos , Ferro/análise , Ferro/imunologia , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredutases , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia
13.
Cell Rep ; 14(3): 572-585, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26774486

RESUMO

The mechanisms by which Mycobacterium tuberculosis (Mtb) maintains metabolic equilibrium to survive during infection and upon exposure to antimycobacterial drugs are poorly characterized. Ergothioneine (EGT) and mycothiol (MSH) are the major redox buffers present in Mtb, but the contribution of EGT to Mtb redox homeostasis and virulence remains unknown. We report that Mtb WhiB3, a 4Fe-4S redox sensor protein, regulates EGT production and maintains bioenergetic homeostasis. We show that central carbon metabolism and lipid precursors regulate EGT production and that EGT modulates drug sensitivity. Notably, EGT and MSH are both essential for redox and bioenergetic homeostasis. Transcriptomic analyses of EGT and MSH mutants indicate overlapping but distinct functions of EGT and MSH. Last, we show that EGT is critical for Mtb survival in both macrophages and mice. This study has uncovered a dynamic balance between Mtb redox and bioenergetic homeostasis, which critically influences Mtb drug susceptibility and pathogenicity.


Assuntos
Antioxidantes/metabolismo , Metabolismo Energético/fisiologia , Ergotioneína/metabolismo , Mycobacterium tuberculosis/patogenicidade , Virulência , Animais , Antioxidantes/análise , Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Cisteína/metabolismo , Suscetibilidade a Doenças , Ergotioneína/análise , Glicopeptídeos/metabolismo , Inositol/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/microbiologia , Camundongos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Oxirredução , Análise de Componente Principal , Espectrometria de Massas em Tandem , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA