RESUMO
Granulomas are lumps of immune cells that can form in various organs. Most granulomas appear unstructured, yet they have some resemblance to lymphoid organs. To better understand granuloma formation, we performed single-cell sequencing and spatial transcriptomics on granulomas from patients with sarcoidosis and bioinformatically reconstructed the underlying gene regulatory networks. We discovered an immune stimulatory environment in granulomas that repurposes transcriptional programs associated with lymphoid organ development. Granuloma formation followed characteristic spatial patterns and involved genes linked to immunometabolism, cytokine and chemokine signaling, and extracellular matrix remodeling. Three cell types emerged as key players in granuloma formation: metabolically reprogrammed macrophages, cytokine-producing Th17.1 cells, and fibroblasts with inflammatory and tissue-remodeling phenotypes. Pharmacological inhibition of one of the identified processes attenuated granuloma formation in a sarcoidosis mouse model. We show that human granulomas adopt characteristic aspects of normal lymphoid organ development in aberrant combinations, indicating that granulomas constitute aberrant lymphoid organs.
Assuntos
Sarcoidose , Transcriptoma , Animais , Camundongos , Humanos , Citocinas/metabolismo , Granuloma , Perfilação da Expressão GênicaRESUMO
Rationale: Chronic sarcoidosis is a complex granulomatous disease with limited treatment options that can progress over time. Understanding the molecular pathways contributing to disease would aid in new therapeutic development. Objectives: To understand whether macrophages from patients with nonresolving chronic sarcoidosis are predisposed to macrophage aggregation and granuloma formation and whether modulation of the underlying molecular pathways influence sarcoidosis granuloma formation. Methods: Macrophages were cultivated in vitro from isolated peripheral blood CD14+ monocytes and evaluated for spontaneous aggregation. Transcriptomics analyses and phenotypic and drug inhibitory experiments were performed on these monocyte-derived macrophages. Human skin biopsies from patients with sarcoidosis and a myeloid Tsc2-specific sarcoidosis mouse model were analyzed for validatory experiments. Measurements and Main Results: Monocyte-derived macrophages from patients with chronic sarcoidosis spontaneously formed extensive granulomas in vitro compared with healthy control participants. Transcriptomic analyses separated healthy and sarcoidosis macrophages and identified an enrichment in lipid metabolic processes. In vitro patient granulomas, sarcoidosis mouse model granulomas, and those directly analyzed from lesional patient skin expressed an aberrant lipid metabolism profile and contained increased neutral lipids. Conversely, a combination of statins and cholesterol-reducing agents reduced granuloma formation both in vitro and in vivo in a sarcoidosis mouse model. Conclusions: Together, our findings show that altered lipid metabolism in sarcoidosis macrophages is associated with its predisposition to granuloma formation and suggest cholesterol-reducing therapies as a treatment option in patients.
Assuntos
Granuloma , Metabolismo dos Lipídeos , Macrófagos , Sarcoidose , Humanos , Animais , Camundongos , Macrófagos/metabolismo , Sarcoidose/metabolismo , Granuloma/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Modelos Animais de DoençasRESUMO
BACKGROUND: Graft-versus-host disease (GvHD) is a major life-threatening complication of allogeneic haematopoietic stem cell transplantation (HSCT), limiting the broad application of HSCT for haematological malignancies. Cutaneous GvHD is described as a post-transplant inflammatory reaction by skin-infiltrating donor T cells and remaining recipient tissue-resident memory T cells. Despite the major influence of lymphocytes on GvHD pathogenesis, the complex role of mononuclear phagocytes (MNPs) in tissues affected by GvHD is increasingly appreciated. OBJECTIVES: To characterize the identity, origin and functions of MNPs in patients with acute cutaneous GvHD. METHODS: Using single-cell RNA sequencing and multiplex tissue immunofluorescence, we identified an increased abundance of MNPs in skin and blood from 36 patients with acute cutaneous GvHD. In cases of sex-mismatched transplantation, we used expression of X-linked genes to detect rapid tissue adaptation of newly recruited donor MNPs resulting in similar transcriptional states of host- and donor-derived macrophages within GvHD skin lesions. RESULTS: We showed that cutaneous GvHD lesions harbour expanded CD163+ tissue-resident macrophage populations with anti-inflammatory and tissue-remodelling properties including interleukin-10 cytokine production. Cell-cell interaction analyses revealed putative signalling to strengthen regulatory T-cell responses. Notably, macrophage polarization in chronic cutaneous GvHD types was proinflammatory and drastically differed from acute GvHD, supporting the notion of distinct cellular players in different clinical GvHD subtypes. CONCLUSIONS: Overall, our data reveal a surprisingly dynamic role of MNPs after HSCT. Specific and time-resolved targeting to repolarize this cell subset may present a promising therapeutic strategy in combatting GvHD skin inflammation.
Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Dermatopatias , Humanos , Doença Enxerto-Hospedeiro/patologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Macrófagos/metabolismo , Dermatopatias/patologia , CitocinasRESUMO
Allogeneic hematopoietic stem-cell transplantation (HSCT) seeks to reconstitute the host's immune system from donor stem cells. The success of HSCT is threatened by complications including leukemia relapse or graft-versus-host-disease (GvHD). To investigate the underlying regulatory processes in central and peripheral T cell recovery, we performed sequential multi-omics analysis of T cells of the skin and blood during HSCT. We detected rapid effector T cell reconstitution, while emergence of regulatory T cells was delayed. Epigenetic and gene-regulatory programs were associated with recovering T cells and diverged greatly between skin and blood T cells. The BRG1/BRM-associated factor chromatin remodeling complex and histone deacetylases (HDACs) were epigenetic regulators involved in restoration of T cell homeostasis after transplantation. In isolated T cells of patients after HSCT, we observed class I HDAC-inhibitors to modulate their dysbalance. The present study highlights the importance of epigenetic regulation in the recovery of T cells following HSCT.
Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia , Humanos , Linhagem da Célula , Epigênese GenéticaRESUMO
BACKGROUND: Epidermal hyperplasia represents a morphologic hallmark of psoriatic skin lesions. Langerhans cells (LCs) in the psoriatic epidermis engage with keratinocytes (KCs) in tight physical interactions; moreover, they induce T-cell-mediated immune responses critical to psoriasis. OBJECTIVE: This study sought to improve the understanding of epidermal factors in psoriasis pathogenesis. METHODS: BMP7-LCs versus TGF-ß1-LCs were phenotypically characterized and their functional properties were analyzed using flow cytometry, cell kinetic studies, co-culture with CD4 T cells, and cytokine measurements. Furthermore, immunohistology of healthy and psoriatic skin was performed. Additionally, in vivo experiments with Junf/fJunBf/fK5cre-ERT mice were carried out to assess the role of bone morphogenetic protein (BMP) signaling in psoriatic skin inflammation. RESULTS: This study identified a KC-derived signal (ie, BMP signaling) to promote epidermal changes in psoriasis. Whereas BMP7 is strictly confined to the basal KC layer in the healthy skin, it is expressed at high levels throughout the lesional psoriatic epidermis. BMP7 instructs precursor cells to differentiate into LCs that phenotypically resemble psoriatic LCs. These BMP7-LCs exhibit proliferative activity and increased sensitivity to bacterial stimulation. Moreover, aberrant high BMP signaling in the lesional epidermis is mediated by a KC intrinsic mechanism, as suggested from murine data and clinical outcome after topical antipsoriatic treatment in human patients. CONCLUSIONS: These data indicate that available TGF-ß family members within the lesional psoriatic epidermis preferentially signal through the canonical BMP signaling cascade to instruct inflammatory-type LCs and to promote psoriatic epidermal changes. Targeting BMP signaling might allow to therapeutically interfere with cutaneous psoriatic manifestations.
Assuntos
Proteína Morfogenética Óssea 7/metabolismo , Linfócitos T CD4-Positivos/imunologia , Epiderme/imunologia , Inflamação/imunologia , Queratinócitos/fisiologia , Células de Langerhans/imunologia , Psoríase/metabolismo , Adulto , Idoso , Animais , Proteína Morfogenética Óssea 7/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Células Cultivadas , Citocinas/metabolismo , Epiderme/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Ativação Linfocitária , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Adulto JovemRESUMO
BACKGROUND: Sarcoidosis is an inflammatory condition that can affect various organs and tissues, causing the formation of granulomas and subsequent functional impairment. The origin of sarcoidosis remains unknown and there are few treatment options. Mechanistic target of rapamycin (mTOR) activation is commonly seen in granulomas of patients across different tissues and has been shown to induce sarcoidosis-like granulomas in a mouse model. This study aimed to examine the efficacy and safety of the mTOR inhibitor sirolimus as a treatment for cutaneous sarcoidosis. METHODS: We did a single-centre, randomised study treating patients with persistent and glucocorticoid-refractory cutaneous sarcoidosis with sirolimus at the Vienna General Hospital, Medical University of Vienna (Vienna, Austria). We recruited participants who had persistent, active, and histologically proven cutaneous sarcoidosis. We used an n-of-1 crossover design in a placebo-controlled, double-blind topical treatment period and a subsequent single-arm systemic treatment phase for 4 months in the same participants. Participants initially received either 0·1% topical sirolimus in Vaseline or placebo (Vaseline alone), twice daily. After a washout period, all participants were subsequently administered a 6 mg loading dose followed by 2 mg sirolimus solution orally once daily, aiming to achieve serum concentrations of 6 ng/mL. The primary endpoint was change in the Cutaneous Sarcoidosis Activity and Morphology Index (CSAMI) after topical or systemic treatment. All participants were included in the safety analyses, and patients having completed the respective treatment period (topical treatment or systemic treatment) were included in the primary analyses. Adverse events were assessed at each study visit by clinicians and were categorised according to their correlation with the study drug, severity, seriousness, and expectedness. This study is registered with EudraCT (2017-004930-27) and is now closed. FINDINGS: 16 participants with persistent cutaneous sarcoidosis were enrolled in the study between Sept 3, 2019, and June 15, 2021. Six (37%) of 16 participants were men, ten (63%) were women, and 15 (94%) were White. The median age of participants was 54 years (IQR 48-58). 14 participants were randomly assigned in the topical phase and 2 entered the systemic treatment phase directly. Daily topical treatment did not improve cutaneous lesions (effect estimate -1·213 [95% CI -2·505 to 0·079], p=0·066). Systemic treatment targeting trough serum concentrations of 6 ng/mL resulted in clinical and histological improvement of skin lesions in seven (70%) of ten participants (median -7·0 [95% CI -16·5 to -3·0], p=0·018). Various morphologies of cutaneous sarcoidosis, including papular, nodular, plaque, scar, and tattoo-associated sarcoidosis, responded to systemic sirolimus therapy with a long-lasting effect for more than 1 year after treatment had been stopped. There were no serious adverse events and no deaths. INTERPRETATION: Short-term treatment with systemic sirolimus might be an effective and safe treatment option for patients with persistent glucocorticoid-refractory sarcoidosis with a long-lasting disease-modulating effect. The effect of sirolimus in granulomatous inflammation should be investigated further in large, multi-centre, randomised clinical trials. FUNDING: Vienna Science and Technology Fund, Austrian Science Fund.
Assuntos
Butilaminas , Sarcoidose , Sirolimo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Glucocorticoides/farmacologia , Granuloma , Vaselina , Sarcoidose/tratamento farmacológico , Sirolimo/efeitos adversosRESUMO
During cutaneous tick attachment, the feeding cavity becomes a site of transmission for tick salivary compounds and tick-borne pathogens. However, the immunological consequences of tick feeding for human skin remain unclear. Here, we assessed human skin and blood samples upon tick bite and developed a human skin explant model mimicking Ixodes ricinus bites and tick-borne pathogen infection. Following tick attachment, we observed rapidly occurring patterns of immunomodulation, including increases in neutrophils and cutaneous B and T cells. T cells upregulated tissue residency markers, while lymphocytic cytokine production was impaired. In early stages of Borrelia burgdorferi model infections, we detected strain-specific immune responses and close spatial relationships between macrophages and spirochetes. Preincubation of spirochetes with tick salivary gland extracts hampered accumulation of immune cells and increased spirochete loads. Collectively, we showed that tick feeding exerts profound changes on the skin immune network that interfere with the primary response against tick-borne pathogens.
Assuntos
Ixodes , Doença de Lyme , Animais , Humanos , Ixodes/fisiologiaRESUMO
The composition of the gut microbiome influences the clinical course after allogeneic hematopoietic stem cell transplantation (HSCT), but little is known about the relevance of skin microorganisms. In a single-center, observational study, we recruited a cohort of 50 patients before undergoing conditioning treatment and took both stool and skin samples up to one year after HSCT. We could confirm intestinal dysbiosis following HSCT and report that the skin microbiome is likewise perturbed in HSCT-recipients. Overall bacterial colonization of the skin was decreased after conditioning. Particularly patients that developed acute skin graft-versus-host disease (aGVHD) presented with an overabundance of Staphylococcus spp. In addition, a loss in alpha diversity was indicative of aGVHD development already before disease onset and correlated with disease severity. Further, co-localization of CD45+ leukocytes and staphylococci was observed in the skin of aGVHD patients even before disease development and paralleled with upregulated genes required for antigen-presentation in mononuclear phagocytes. Overall, our data reveal disturbances of the skin microbiome as well as cutaneous immune response in HSCT recipients with changes associated with cutaneous aGVHD.