Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36537573

RESUMO

The population sizes of different retinal cell types vary between different strains of mice, and that variation can be mapped to genomic loci in order to identify its polygenic origin. In some cases, controlling genes act independently, whereas in other instances, they exhibit epistasis. Here, we identify an epistatic interaction revealed through the mapping of quantitative trait loci from a panel of recombinant inbred strains of mice. The population of retinal horizontal cells exhibits a twofold variation in number, mapping to quantitative trait loci on chromosomes 3 and 13, where these loci are shown to interact epistatically. We identify a prospective genetic interaction underlying this, mediated by the bHLH transcription factor Neurog2, at the chromosome 3 locus, functioning to repress the LIM homeodomain transcription factor Isl1, at the chromosome 13 locus. Using single and double conditional knockout mice, we confirm the countervailing actions of each gene, and validate in vitro a crucial role for two single nucleotide polymorphisms in the 5'UTR of Isl1, one of which yields a novel E-box, mediating the repressive action of Neurog2.


Assuntos
Locos de Características Quantitativas , Retina , Animais , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Contagem de Células , Mapeamento Cromossômico , Epistasia Genética , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Estudos Prospectivos , Locos de Características Quantitativas/genética
2.
J Neurosci ; 43(49): 8367-8384, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37775301

RESUMO

The nuclear factor one (NFI) transcription factor genes Nfia, Nfib, and Nfix are all enriched in late-stage retinal progenitor cells, and their loss has been shown to retain these progenitors at the expense of later-generated retinal cell types. Whether they play any role in the specification of those later-generated fates is unknown, but the expression of one of these, Nfia, in a specific amacrine cell type may intimate such a role. Here, Nfia conditional knockout (Nfia-CKO) mice (both sexes) were assessed, finding a massive and largely selective absence of AII amacrine cells. There was, however, a partial reduction in type 2 cone bipolar cells (CBCs), being richly interconnected to AII cells. Counts of dying cells showed a significant increase in Nfia-CKO retinas at postnatal day (P)7, after AII cell numbers were already reduced but in advance of the loss of type 2 CBCs detected by P10. Those results suggest a role for Nfia in the specification of the AII amacrine cell fate and a dependency of the type 2 CBCs on them. Delaying the conditional loss of Nfia to the first postnatal week did not alter AII cell number nor differentiation, further suggesting that its role in AII cells is solely associated with their production. The physiological consequences of their loss were assessed using the ERG, finding the oscillatory potentials to be profoundly diminished. A slight reduction in the b-wave was also detected, attributed to an altered distribution of the terminals of rod bipolar cells, implicating a role of the AII amacrine cells in constraining their stratification.SIGNIFICANCE STATEMENT The transcription factor NFIA is shown to play a critical role in the specification of a single type of retinal amacrine cell, the AII cell. Using an Nfia-conditional knockout mouse to eliminate this population of retinal neurons, we demonstrate two selective bipolar cell dependencies on the AII cells; the terminals of rod bipolar cells become mis-stratified in the inner plexiform layer, and one type of cone bipolar cell undergoes enhanced cell death. The physiological consequence of this loss of the AII cells was also assessed, finding the cells to be a major contributor to the oscillatory potentials in the electroretinogram.


Assuntos
Células Amácrinas , Fatores de Transcrição NFI , Retina , Animais , Feminino , Masculino , Camundongos , Células Amácrinas/metabolismo , Eletrorretinografia , Fatores de Transcrição NFI/metabolismo , Retina/metabolismo , Células Bipolares da Retina , Fatores de Transcrição/metabolismo
3.
J Anat ; 243(2): 204-222, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35292986

RESUMO

The precise specification of cellular fate is thought to ensure the production of the correct number of neurons within a population. Programmed cell death may be an additional mechanism controlling cell number, believed to refine the proper ratio of pre- to post-synaptic neurons for a given species. Here, we consider the size of three different neuronal populations in the rod pathway of the mouse retina: rod photoreceptors, rod bipolar cells, and AII amacrine cells. Across a collection of 28 different strains of mice, large variation in the numbers of all three cell types is present. The variation in their numbers is not correlated, so that the ratio of rods to rod bipolar cells, as well as rod bipolar cells to AII amacrine cells, varies as well. Establishing connectivity between such variable pre- and post-synaptic populations relies upon plasticity that modulates process outgrowth and morphological differentiation, which we explore experimentally for both rod bipolar and AII amacrine cells in a mouse retina with elevated numbers of each cell type. While both rod bipolar dendritic and axonal arbors, along with AII lobular arbors, modulate their areal size in relation to local homotypic cell densities, the dendritic appendages of the AII amacrine cells do not. Rather, these processes exhibit a different form of plasticity, regulating the branching density of their overlapping arbors. Each form of plasticity should ensure uniformity in retinal coverage in the presence of the independent specification of afferent and target cell number.


Assuntos
Dendritos , Retina , Camundongos , Animais , Dendritos/fisiologia , Células Amácrinas/fisiologia , Axônios
4.
J Neurosci ; 41(1): 103-117, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33208470

RESUMO

Amacrine cells of the retina are conspicuously variable in their morphologies, their population demographics, and their ensuing functions. Vesicular glutamate transporter 3 (VGluT3) amacrine cells are a recently characterized type of amacrine cell exhibiting local dendritic autonomy. The present analysis has examined three features of this VGluT3 population, including their density, local distribution, and dendritic spread, to discern the extent to which these are interrelated, using male and female mice. We first demonstrate that Bax-mediated cell death transforms the mosaic of VGluT3 cells from a random distribution into a regular mosaic. We subsequently examine the relationship between cell density and mosaic regularity across recombinant inbred strains of mice, finding that, although both traits vary across the strains, they exhibit minimal covariation. Other genetic determinants must therefore contribute independently to final cell number and to mosaic order. Using a conditional KO approach, we further demonstrate that Bax acts via the bipolar cell population, rather than cell-intrinsically, to control VGluT3 cell number. Finally, we consider the relationship between the dendritic arbors of single VGluT3 cells and the distribution of their homotypic neighbors. Dendritic field area was found to be independent of Voronoi domain area, while dendritic coverage of single cells was not conserved, simply increasing with the size of the dendritic field. Bax-KO retinas exhibited a threefold increase in dendritic coverage. Each cell, however, contributed less dendrites at each depth within the plexus, intermingling their processes with those of neighboring cells to approximate a constant volumetric density, yielding a uniformity in process coverage across the population.SIGNIFICANCE STATEMENT Different types of retinal neuron spread their processes across the surface of the retina to achieve a degree of dendritic coverage that is characteristic of each type. Many of these types achieve a constant coverage by varying their dendritic field area inversely with the local density of like-type neighbors. Here we report a population of retinal amacrine cells that do not develop dendritic arbors in relation to the spatial positioning of such homotypic neighbors; rather, this cell type modulates the extent of its dendritic branching when faced with a variable number of overlapping dendritic fields to approximate a uniformity in dendritic density across the retina.


Assuntos
Células Amácrinas/fisiologia , Sistemas de Transporte de Aminoácidos Acídicos/fisiologia , Dendritos/fisiologia , Retina/citologia , Retina/fisiologia , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animais , Apoptose/fisiologia , Contagem de Células , Morte Celular , Mapeamento Cromossômico , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios Aferentes/fisiologia , Locos de Características Quantitativas , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/fisiologia
5.
PLoS Biol ; 17(10): e3000492, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31626642

RESUMO

Naturally occurring cell death is a fundamental developmental mechanism for regulating cell numbers and sculpting developing organs. This is particularly true in the nervous system, where large numbers of neurons and oligodendrocytes are eliminated via apoptosis during normal development. Given the profound impact of death upon these two major cell populations, it is surprising that developmental death of another major cell type-the astrocyte-has rarely been studied. It is presently unclear whether astrocytes are subject to significant developmental death, and if so, how it occurs. Here, we address these questions using mouse retinal astrocytes as our model system. We show that the total number of retinal astrocytes declines by over 3-fold during a death period spanning postnatal days 5-14. Surprisingly, these astrocytes do not die by apoptosis, the canonical mechanism underlying the vast majority of developmental cell death. Instead, we find that microglia engulf astrocytes during the death period to promote their developmental removal. Genetic ablation of microglia inhibits astrocyte death, leading to a larger astrocyte population size at the end of the death period. However, astrocyte death is not completely blocked in the absence of microglia, apparently due to the ability of astrocytes to engulf each other. Nevertheless, mice lacking microglia showed significant anatomical changes to the retinal astrocyte network, with functional consequences for the astrocyte-associated vasculature leading to retinal hemorrhage. These results establish a novel modality for naturally occurring cell death and demonstrate its importance for the formation and integrity of the retinal gliovascular network.


Assuntos
Astrócitos/citologia , Morte Celular/genética , Microglia/citologia , Retina/citologia , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiopatologia , Comunicação Celular , Contagem de Células , Toxina Diftérica/toxicidade , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Hemorragia Retiniana/genética , Hemorragia Retiniana/metabolismo , Hemorragia Retiniana/fisiopatologia , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Lab Invest ; 99(10): 1547-1560, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31101854

RESUMO

Diabetic retinopathy is the most common microvascular complication of diabetes and is a major cause of blindness, but an understanding of the pathogenesis of the disease has been hampered by a lack of accurate animal models. Here, we explore the dynamics of retinal cellular changes in the Nile rat (Arvicanthis niloticus), a carbohydrate-sensitive model for type 2 diabetes. The early retinal changes in diabetic Nile rats included increased acellular capillaries and loss of pericytes that correlated linearly with the duration of diabetes. These vascular changes occurred in the presence of microglial infiltration but in the absence of retinal ganglion cell loss. After a prolonged duration of diabetes, the Nile rat also exhibits a spectrum of retinal lesions commonly seen in the human condition including vascular leakage, capillary non-perfusion, and neovascularization. Our longitudinal study documents a range and progression of retinal lesions in the diabetic Nile rat remarkably similar to those observed in human diabetic retinopathy, and suggests that this model will be valuable in identifying new therapeutic strategies.


Assuntos
Capilares/patologia , Retinopatia Diabética/patologia , Retina/patologia , Animais , Progressão da Doença , Edema/patologia , Estudos Longitudinais , Murinae
7.
Glia ; 66(3): 623-636, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29178409

RESUMO

Sox2 is a transcriptional regulator that is highly expressed in retinal astrocytes, yet its function in these cells has not previously been examined. To understand its role, we conditionally deleted Sox2 from the population of astrocytes and examined the consequences on retinal development. We found that Sox2 deletion does not alter the migration of astrocytes, but it impairs their maturation, evidenced by the delayed upregulation of glial fibrillary acidic protein (GFAP) across the retina. The centro-peripheral gradient of angiogenesis is also delayed in Sox2-CKO retinas. In the mature retina, we observed lasting abnormalities in the astrocytic population evidenced by the sporadic loss of GFAP immunoreactivity in the peripheral retina as well as by the aberrant extension of processes into the inner retina. Blood vessels in the adult retina are also under-developed and show a decrease in the frequency of branch points and in total vessel length. The developmental relationship between maturing astrocytes and angiogenesis suggests a causal relationship between the astrocytic loss of Sox2 and the vascular architecture in maturity. We suggest that the delay in astrocytic maturation and vascular invasion may render the retina hypoxic, thereby causing the abnormalities we observe in adulthood. These studies uncover a novel role for Sox2 in the development of retinal astrocytes and indicate that its removal can lead to lasting changes to retinal homeostasis.


Assuntos
Astrócitos/metabolismo , Retina/crescimento & desenvolvimento , Vasos Retinianos/crescimento & desenvolvimento , Fatores de Transcrição SOXB1/metabolismo , Animais , Astrócitos/citologia , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos Transgênicos , Retina/citologia , Retina/metabolismo , Vasos Retinianos/citologia , Vasos Retinianos/metabolismo , Fatores de Transcrição SOXB1/genética
8.
J Neurophysiol ; 120(4): 2121-2129, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30089022

RESUMO

Cell-intrinsic factors, in conjunction with environmental signals, guide migration, differentiation, and connectivity during early development of neuronal circuits. Within the retina, inhibitory starburst amacrine cells (SBACs) comprise ON types with somas in the ganglion cell layer (GCL) and dendrites stratifying narrowly in the inner half of the inner plexiform layer (IPL) and OFF types with somas in the inner nuclear layer (INL) and dendrites stratifying narrowly in the outer half of the IPL. The transcription factor Sox2 is crucial to this subtype specification. Without Sox2, many ON-type SBACs destined for the GCL settle in the INL while many that reach the GCL develop bistratified dendritic arbors. This study asked whether ON-type SBACs in Sox2-conditional knockout retinas exhibit selective connectivity only with ON-type bipolar cells or their bistratified morphology allows them to connect to both ON and OFF bipolar cells. Physiological data demonstrate that these cells receive ON and OFF excitatory inputs, indicating that the ectopically stratified dendrites make functional synapses with bipolar cells. The excitatory inputs were smaller and more transient in Sox2-conditional knockout compared with wild type; however, inhibitory inputs appeared largely unchanged. Thus dendritic stratification, rather than cellular identification, may be the major factor that determines ON vs. OFF connectivity. NEW & NOTEWORTHY Conditional knockout of the transcription factor Sox2 during early embryogenesis converts a monostratifying starburst amacrine cell into a bistratifying starburst cell. Here we show that these bistratifying starburst amacrine cells form functional synaptic connections with both ON and OFF bipolar cells. This suggests that normal ON vs. OFF starburst connectivity may not require distinct molecular specification. Proximity alone may be sufficient to allow formation of functional synapses.


Assuntos
Células Amácrinas/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transmissão Sináptica , Células Amácrinas/fisiologia , Animais , Dendritos/metabolismo , Dendritos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição SOXB1/genética
9.
Exp Eye Res ; 177: 208-212, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30240584

RESUMO

Many types of retinal neuron modulate the distribution of their processes to ensure a uniform coverage of the retinal surface. Dendritic field area, for instance, is inversely related to the variation in cellular density for many cell types, observed either across retinal eccentricity or between different strains of mice that differ in cell number. Dopaminergic amacrine (DA) cells, by contrast, have dendritic arbors that bear no spatial relationship to the presence of their immediate homotypic neighbors, yet it remains to be determined whether their coverage upon the retina, as a population, is conserved across variation in their total number. The present study assessed the overall density of the dopaminergic plexus in the inner plexiform layer in the presence of large variation in the total number of DA cells, as well as their retinal dopamine content, to determine whether either of these features is conserved. We first compared these traits between two strains of mice (C57BL/6J and A/J) that exhibit a two-fold difference in DA cell number. We subsequently examined these same traits in littermate mice for which the pro-apoptotic Bax gene was either intact or knocked out, yielding a five-fold difference in DA cell number. In both comparisons, we found greater plexus density and DA content in the strain or condition with the greater number of DA cells. The population of DA cells, therefore, does not appear to self-regulate its process coverage to achieve a constant density as the DA mosaic is established during development, nor its functional dopamine content in maturity.


Assuntos
Células Amácrinas/citologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/citologia , Retina/metabolismo , Animais , Contagem de Células , Cromatografia Líquida de Alta Pressão , Dendritos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína X Associada a bcl-2/genética
10.
Vis Neurosci ; 35: E003, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29905123

RESUMO

The orderly spacing of retinal neurons is commonly regarded as a characteristic feature of retinal nerve cell populations. Exemplars of this property include the horizontal cells and the cholinergic amacrine cells, where individual cells minimize the proximity to like-type neighbors, yielding regularity in the patterning of their somata. Recently, two types of retinal bipolar cells in the mouse retina were shown to exhibit an order in their somal patterning no different from density-matched simulations constrained by soma size but being otherwise randomly distributed. The present study has now extended this finding to a type of retinal amacrine cell, the AII amacrine cell. Voronoi domain analysis revealed the patterning in the population of AII amacrine somata to be no different from density-matched and soma-size-constrained random simulations, while analysis of the density recovery profile showed AII amacrine cells to exhibit a minimal intercellular spacing identical to that for those random simulations: AII amacrine somata were positioned side-by-side as often as chance would predict. Regularity indexes and packing factors (PF) were far lower than those achieved by either the horizontal cells or cholinergic amacrine cells, with PFs also being comparable to those derived from the constrained random simulations. These results extend recent findings that call into question the widespread assumption that all types of retinal neurons are assembled as regular somal arrays, and have implications for the way in which AII amacrine cells must distribute their processes to ensure a uniform coverage of the retinal surface.


Assuntos
Células Amácrinas/citologia , Células Bipolares da Retina/citologia , Animais , Corpo Celular/fisiologia , Contagem de Células , Dendritos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
11.
Vis Neurosci ; 34: E002, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28065198

RESUMO

Retinal bipolar cells spread their dendritic arbors to tile the retinal surface, extending them to the tips of the dendritic fields of their homotypic neighbors, minimizing dendritic overlap. Such uniform nonredundant dendritic coverage of these populations would suggest a degree of spatial order in the properties of their somal distributions, yet few studies have examined the patterning in retinal bipolar cell mosaics. The present study examined the organization of two types of cone bipolar cells in the mouse retina, the Type 2 cells and the Type 4 cells, and compared their spatial statistical properties with those of the horizontal cells and the cholinergic amacrine cells, as well as to random simulations of cells matched in density and constrained by soma size. The Delauney tessellation of each field was computed, from which nearest neighbor distances and Voronoi domain areas were extracted, permitting a calculation of their respective regularity indexes (RIs). The spatial autocorrelation of the field was also computed, from which the effective radius and packing factor (PF) were determined. Both cone bipolar cell types were found to be less regular and less efficiently packed than either the horizontal cells or cholinergic amacrine cells. Furthermore, while the latter two cell types had RIs and PFs in excess of those for their matched random simulations, the two types of cone bipolar cells had spatial statistical properties comparable to random distributions. An analysis of single labeled cone bipolar cells revealed dendritic arbors frequently skewed to one side of the soma, as would be expected from a randomly distributed population of cells with dendrites that tile. Taken together, these results suggest that, unlike the horizontal cells or cholinergic amacrine cells which minimize proximity to one another, cone bipolar cell types are constrained only by their physical size.


Assuntos
Células Bipolares da Retina/citologia , Células Fotorreceptoras Retinianas Cones/citologia , Células Amácrinas/citologia , Animais , Contagem de Células , Dendritos/fisiologia , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos C57BL , Retina/citologia , Células Horizontais da Retina/citologia
12.
Proc Natl Acad Sci U S A ; 111(25): 9295-300, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24927528

RESUMO

Neurons are commonly organized as regular arrays within a structure, and their patterning is achieved by minimizing the proximity between like-type cells, but molecular mechanisms regulating this process have, until recently, been unexplored. We performed a forward genetic screen using recombinant inbred (RI) strains derived from two parental A/J and C57BL/6J mouse strains to identify genomic loci controlling spacing of cholinergic amacrine cells, which is a subclass of retinal interneuron. We found conspicuous variation in mosaic regularity across these strains and mapped a sizeable proportion of that variation to a locus on chromosome 11 that was subsequently validated with a chromosome substitution strain. Using a bioinformatics approach to narrow the list of potential candidate genes, we identified pituitary tumor-transforming gene 1 (Pttg1) as the most promising. Expression of Pttg1 was significantly different between the two parental strains and correlated with mosaic regularity across the RI strains. We identified a seven-nucleotide deletion in the Pttg1 promoter in the C57BL/6J mouse strain and confirmed a direct role for this motif in modulating Pttg1 expression. Analysis of Pttg1 KO mice revealed a reduction in the mosaic regularity of cholinergic amacrine cells, as well as horizontal cells, but not in two other retinal cell types. Together, these results implicate Pttg1 in the regulation of homotypic spacing between specific types of retinal neurons. The genetic variant identified creates a binding motif for the transcriptional activator protein 1 complex, which may be instrumental in driving differential expression of downstream processes that participate in neuronal spacing.


Assuntos
Células Amácrinas/metabolismo , Neurônios Colinérgicos/metabolismo , Proteínas do Olho/biossíntese , Regulação da Expressão Gênica/fisiologia , Securina/biossíntese , Células Amácrinas/citologia , Animais , Sequência de Bases , Neurônios Colinérgicos/citologia , Proteínas do Olho/genética , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Securina/genética , Deleção de Sequência
13.
Hum Mol Genet ; 23(16): 4260-71, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24691551

RESUMO

The Maf-family leucine zipper transcription factor NRL is essential for rod photoreceptor development and functional maintenance in the mammalian retina. Mutations in NRL are associated with human retinopathies, and loss of Nrl in mice leads to a cone-only retina with the complete absence of rods. Among the highly down-regulated genes in the Nrl(-/-) retina, we identified receptor expression enhancing protein 6 (Reep6), which encodes a member of a family of proteins involved in shaping of membrane tubules and transport of G-protein coupled receptors. Here, we demonstrate the expression of a novel Reep6 isoform (termed Reep6.1) in the retina by exon-specific Taqman assay and rapid analysis of complementary deoxyribonucleic acid (cDNA) ends (5'-RACE). The REEP6.1 protein includes 27 additional amino acids encoded by exon 5 and is specifically expressed in rod photoreceptors of developing and mature retina. Chromatin immunoprecipitation assay identified NRL binding within the Reep6 intron 1. Reporter assays in cultured cells and transfections in retinal explants mapped an intronic enhancer sequence that mediated NRL-directed Reep6.1 expression. We also demonstrate that knockdown of Reep6 in mouse and zebrafish resulted in death of retinal cells. Our studies implicate REEP6.1 as a key functional target of NRL-centered transcriptional regulatory network in rod photoreceptors.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas do Olho/genética , Proteínas de Membrana Transportadoras/química , Isoformas de Proteínas/genética , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Ativação Transcricional , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Elementos Facilitadores Genéticos , Proteínas do Olho/metabolismo , Redes Reguladoras de Genes , Células HEK293 , Humanos , Íntrons , Proteínas de Membrana , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Isoformas de Proteínas/metabolismo , Peixe-Zebra
14.
Exp Eye Res ; 150: 4-21, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27060374

RESUMO

Although retinal neurodegenerative conditions such as age-related macular degeneration, glaucoma, diabetic retinopathy, retinitis pigmentosa, and retinal detachment have different etiologies and pathological characteristics, they also have many responses in common at the cellular level, including neural and glial remodeling. Structural changes in Müller cells, the large radial glia of the retina in retinal disease and injury have been well described, that of the retinal astrocytes remains less so. Using modern imaging technology to describe the structural remodeling of retinal astrocytes after retinal detachment is the focus of this paper. We present both a review of critical literature as well as novel work focusing on the responses of astrocytes following rhegmatogenous and serous retinal detachment. The mouse presents a convenient model system in which to study astrocyte reactivity since the Mϋller cell response is muted in comparison to other species thereby allowing better visualization of the astrocytes. We also show data from rat, cat, squirrel, and human retina demonstrating similarities and differences across species. Our data from immunolabeling and dye-filling experiments demonstrate previously undescribed morphological characteristics of normal astrocytes and changes induced by detachment. Astrocytes not only upregulate GFAP, but structurally remodel, becoming increasingly irregular in appearance, and often penetrating deep into neural retina. Understanding these responses, their consequences, and what drives them may prove to be an important component in improving visual outcome in a variety of therapeutic situations. Our data further supports the concept that astrocytes are important players in the retina's overall response to injury and disease.


Assuntos
Astrócitos/patologia , Descolamento Retiniano/patologia , Células Ganglionares da Retina/patologia , Animais , Gatos , Plasticidade Celular , Modelos Animais de Doenças , Células Ependimogliais/patologia , Humanos , Camundongos , Camundongos Mutantes , Ratos , Ratos Long-Evans , Sciuridae
15.
Langmuir ; 32(7): 1909-19, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26738425

RESUMO

Contrary to the well-studied dynamics and mechanics at organ and tissue levels, there is still a lack of good understanding for single cell dynamics and mechanics. Single cell dynamics and mechanics may act as an interface to provide unique information reflecting activities at the organ and tissue levels. This research was aimed at quantifying doxorubicin- and dexrazoxane-induced nanomechanics and mechanical effects to single cardiomyocytes, to reveal the therapeutic effectiveness of drugs at the single cell level and to optimize drug administration for reducing cardiotoxicity. This work employed a nanoinstrumentation platform, including a digital holographic microscope combined with an atomic force microscope, which can characterize cell stiffness and beating dynamics in response to drug exposures in real time and obtain time-dose-dependent effects of cardiotoxicity and protection. Through this research, an acute increase and a delayed decrease of surface beating force induced by doxorubicin was characterized. Dexrazoxane treated cells maintained better beating force and mechanical functions than cells without any treatment, which demonstrated cardioprotective effects of dexrazoxane. In addition, combined drug effects were quantitatively evaluated following various drug administration protocols. Preadministration of dexrazoxane was demonstrated to have protective effects against doxorubicin, which could lead to better strategies for cardiotoxicity prevention and anticancer drug administration. This study concluded that quantification of nanomechanics and mechanical effects at the single cell level could offer unique insights of molecular mechanisms involved in cellular activities influencing organ and tissue level responses to drug exposure, providing a new opportunity for the development of effective and time-dose-dependent strategies of drug administration.


Assuntos
Doxorrubicina/administração & dosagem , Doxorrubicina/efeitos adversos , Fenômenos Mecânicos , Miócitos Cardíacos/efeitos dos fármacos , Nanotecnologia/instrumentação , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Cardiotônicos/farmacologia , Dexrazoxano/farmacologia , Interações Medicamentosas , Camundongos , Miócitos Cardíacos/citologia
16.
Mol Cell Neurosci ; 65: 102-13, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25752730

RESUMO

Islet-1 (Isl1) is a LIM-homeodomain (LIM-HD) transcription factor that functions in a combinatorial manner with other LIM-HD proteins to direct the differentiation of distinct cell types within the central nervous system and many other tissues. A study of pancreatic cell lines showed that Isl1 is alternatively spliced generating a second isoform, Isl1ß, which is missing 23 amino acids within the C-terminal region. This study examines the expression of the canonical and alternative Isl1 transcripts across other tissues, in particular, within the retina, where Isl1 is required for the differentiation of multiple neuronal cell types. The alternative splicing of Isl1 is shown to occur in multiple tissues, but the relative abundance of Isl1α and Isl1ß expression varies greatly across them. In most tissues, Isl1α is the more abundant transcript, but in others the transcripts are expressed equally, or the alternative splice variant is dominant. Within the retina, differential expression of the two Isl1 transcripts increases as a function of development, with dynamic changes in expression peaking at E16.5 and again at P10. At the cellular level, individual retinal ganglion cells vary in their expression, with a subset of small-to-medium sized cells expressing only the alternative isoform. The functional significance of the difference in protein sequence between the two Isl1 isoforms was also assessed using a luciferase assay, demonstrating that the alternative isoform forms a less effective transcriptional complex for activating gene expression. These results demonstrate the differential presence of the canonical and alternative isoforms of Isl1 amongst retinal ganglion cell classes. As Isl1 participates in the differentiation of multiple cell types within the CNS, the present results support a role for alternative splicing in the establishment of cellular diversity in the developing nervous system.


Assuntos
Processamento Alternativo , Proteínas com Homeodomínio LIM/genética , Retina/metabolismo , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Proteínas com Homeodomínio LIM/química , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Especificidade de Órgãos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retina/citologia , Retina/crescimento & desenvolvimento , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
17.
J Neurosci ; 34(30): 10109-21, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25057212

RESUMO

The retina contains two populations of cholinergic amacrine cells, one positioned in the ganglion cell layer (GCL) and the other in the inner nuclear layer (INL), that together comprise ∼1/2 of a percent of all retinal neurons. The present study examined the genetic control of cholinergic amacrine cell number and distribution between these two layers. The total number of cholinergic amacrine cells was quantified in the C57BL/6J and A/J inbred mouse strains, and in 25 recombinant inbred strains derived from them, and variations in their number and ratio (GCL/INL) across these strains were mapped to genomic loci. The total cholinergic amacrine cell number was found to vary across the strains, from 27,000 to 40,000 cells, despite little variation within individual strains. The number of cells was always lower within the GCL relative to the INL, and the sizes of the two populations were strongly correlated, yet there was variation in their ratio between the strains. Approximately 1/3 of that variation in cell ratio was mapped to a locus on chromosome 3, where Sex determining region Y box 2 (Sox2) was identified as a candidate gene due to the presence of a 6-nucleotide insertion in the protein-coding sequence in C57BL/6J and because of robust and selective expression in cholinergic amacrine cells. Conditionally deleting Sox2 from the population of nascent cholinergic amacrine cells perturbed the normal ratio of cells situated in the GCL versus the INL and induced a bistratifying morphology, with dendrites distributed to both ON and OFF strata within the inner plexiform layer.


Assuntos
Células Amácrinas/fisiologia , Neurônios Colinérgicos/fisiologia , Dendritos/fisiologia , Retina/citologia , Retina/fisiologia , Fatores de Transcrição SOXB1/fisiologia , Animais , Contagem de Células/métodos , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos A , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
18.
Dev Biol ; 394(2): 191-6, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25169191

RESUMO

Programmed cell death contributes to the histogenesis of the nervous system, and is believed to be modulated through the sustaining effects of afferents and targets during the period of synaptogenesis. Cone bipolar cells undergo programmed cell death during development, and we confirm that the numbers of three different types are increased when the pro-apoptotic Bax gene is knocked out. When their cone afferents are selectively eliminated, or when the population of retinal ganglion cells is increased, however, cone bipolar cell number remains unchanged. Programmed cell death of the cone bipolar cell populations, therefore, may be modulated cell-intrinsically rather than via interactions with these synaptic partners.


Assuntos
Apoptose/fisiologia , Comunicação Celular/fisiologia , Organogênese/fisiologia , Retina/embriologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Sinapses/fisiologia , Animais , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Knockout , Microscopia Confocal , Proteína X Associada a bcl-2/deficiência , Proteína X Associada a bcl-2/genética
19.
J Neurosci ; 33(45): 17847-62, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24198374

RESUMO

The present study examined the consequences of eliminating horizontal cells from the outer retina during embryogenesis upon the organization and assembly of the outer plexiform layer (OPL). Retinal horizontal cells exhibit a migration defect in Lim1-conditional knock-out (Lim1-CKO) mice and become mispositioned in the inner retina before birth, redirecting their dendrites into the inner plexiform layer. The resultant (mature) OPL, developing in the absence of horizontal cells, shows a retraction of rod spherules into the outer nuclear layer and a sprouting of rod bipolar cell dendrites to reach ectopic ribbon-protein puncta. Cone pedicles and the dendrites of type 7 cone bipolar cells retain their characteristic stratification and colocalization within the collapsed OPL, although both are atrophic and the spatial distribution of the pedicles is disrupted. Developmental analysis of Lim1-CKO retina reveals that components of the rod and cone pathways initially co-assemble within their normal strata in the OPL, indicating that horizontal cells are not required for the correct targeting of photoreceptor terminals or bipolar cell dendrites. As the rod spherules begin to retract during the second postnatal week, rod bipolar cells initially show no signs of ectopic growth, sprouting only subsequently and continuing to do so well after the eighth postnatal week. These results demonstrate the critical yet distinctive roles for horizontal cells on the rod and cone pathways and highlight a unique and as-yet-unrecognized maintenance function of an inhibitory interneuron that is not required for the initial targeting and co-stratification of other components in the circuit.


Assuntos
Plasticidade Neuronal/fisiologia , Células Horizontais da Retina/fisiologia , Neurônios Retinianos/fisiologia , Vias Visuais/crescimento & desenvolvimento , Animais , Feminino , Camundongos , Camundongos Transgênicos , Sinapses/metabolismo , Vias Visuais/fisiologia
20.
Proc Natl Acad Sci U S A ; 108(23): 9697-702, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21576457

RESUMO

Neuronal populations display conspicuous variability in their size among individuals, but the genetic sources of this variation are largely undefined. We demonstrate a large and highly heritable variation in neuron number within the mouse retina, affecting a critical population of interneurons, the horizontal cells. Variation in the size of this population maps to the distal end of chromosome (Chr) 13, a region homologous to human Chr 5q11.1-11.2. This region contains two genes known to modulate retinal cell number. Using conditional knock-out mice, we demonstrate that one of these genes, the LIM homeodomain gene Islet-1 (Isl1), plays a role in regulating horizontal cell number. Genetic differences in Isl1 expression are high during the period of horizontal cell production, and cis-regulation of Isl1 expression within the retina is demonstrated directly. We identify a single nucleotide polymorphism in the 5' UTR of Isl1 that creates an E-box sequence as a candidate causal variant contributing to this variation in horizontal cell number.


Assuntos
Embrião de Mamíferos/metabolismo , Proteínas de Homeodomínio/genética , Retina/metabolismo , Regiões 5' não Traduzidas/genética , Animais , Contagem de Células , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Feminino , Imunofluorescência , Folistatina/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Homeodomínio LIM , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Camundongos Transgênicos , Polimorfismo de Nucleotídeo Único , Gravidez , Regiões Promotoras Genéticas/genética , Locos de Características Quantitativas/genética , Retina/citologia , Retina/embriologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA