Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Hazard Mater ; 463: 132734, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-37922581

RESUMO

Trends in concentration, distribution, and variability of per- and polyfluoroalkyl substances (PFAS) in biosolids are characterized using an extensive dataset of 350 samples from 190 wastewater treatment plants (WWTPs) across Michigan. All samples are comprised of final treated solids generated at the end of the wastewater treatment process. Concentrations of both individual and Σ24 PFAS are lognormally distributed, with Σ24 PFAS concentrations ranging from 1-3200 ng/g and averaging 108 ± 277 ng/g dry wt. PFAS with carboxyl and sulfonic functional groups comprise 29% and 71% of Σ24 PFAS concentrations, respectively, on average. Primary sample variability in concentration is associated with long-chain PFAS with higher tendency for partitioning to biosolids. Short-chain carboxylic compounds, most notably PFHxA, are responsible for secondary concentration variability. Usage of FTSA and PFBS replacements to long-chain sulfonic compounds also contributes to variance in biosolids concentrations. Sulfonamide precursor compounds as a collective group are detected at a similar frequency as PFOS and often have higher concentrations. Trends in PFAS enrichment for individual PFAS vary at least 3 orders-of-magnitude and generally increase with compound hydrophobicity; however, partitioning of PFAS onto solids in WWTPs is a complex process not easily described nor constrained using experimentally-derived partitioning coefficients.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , Esgotos , Biossólidos , Fluorocarbonos/análise , Michigan , Poluentes Químicos da Água/análise
2.
J Hazard Mater ; 477: 135334, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39096635

RESUMO

Per- and polyfluorinated alkyl substances (PFAS) enrichment in foam was investigated for the first time at a wastewater treatment plant cascade. A novel sampling device was utilized to allow spatial and temporal heterogeneity in PFAS concentrations and liquid content to be characterized. Concentrations of 8 PFAS compounds were normalized to liquid content and fit to a power law model revealing strong correlation (R2 = 0.91) between drainage induced enrichment and PFAS molar volume. Short chain PFAS such as perfluorobutanoate (PFBA) exhibited minor to no enrichment factors in foam (0.24-5.9) compared to effluent concentrations across the range of foam liquid contents (0.28-6.24 %), while long chain compounds such as perfluorooctane sulfonate (PFOS) became highly enriched with factors of 295-143,000. A conceptual model is proposed to explain higher than expected enrichment of more surface-active PFAS relative to liquid content, which combines continuous partitioning of PFAS to air bubbles during foam formation with additional partitioning during non-linear drainage and foam collapse, both controlled by their affinity for the air-water interface. Scoping calculations suggest the majority of PFOS and other long chain PFAS may be removed if foam is continuously collected with potential to reduce waste volume under economic barriers for current destructive technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA