RESUMO
BACKGROUND: Variation in omics data due to intrinsic biological stochasticity is often viewed as a challenging and undesirable feature of complex systems analyses. In fact, numerous statistical methods are utilized to minimize the variation among biological replicates. RESULTS: We demonstrate that the common statistics relative standard deviation (RSD) and coefficient of variation (CV), which are often used for quality control or part of a larger pipeline in omics analyses, can also be used as a metric of a physiological stress response. Using an approach we term Replicate Variation Analysis (RVA), we demonstrate that acute physiological stress leads to feature-wide canalization of CV profiles of metabolomes and proteomes across biological replicates. Canalization is the repression of variation between replicates, which increases phenotypic similarity. Multiple in-house mass spectrometry omics datasets in addition to publicly available data were analyzed to assess changes in CV profiles in plants, animals, and microorganisms. In addition, proteomics data sets were evaluated utilizing RVA to identify functionality of reduced CV proteins. CONCLUSIONS: RVA provides a foundation for understanding omics level shifts that occur in response to cellular stress. This approach to data analysis helps characterize stress response and recovery, and could be deployed to detect populations under stress, monitor health status, and conduct environmental monitoring.
Assuntos
Metaboloma , Proteômica , Animais , Correlação de Dados , Análise de Dados , Nível de SaúdeRESUMO
This work deals with the optimization of an extracellular phospholipase C production by Bacillus cereus (PLCBc) using Response Surface Methodology (RMS) and Box-Behnken design. In fact, after optimization, a maximum phospholipase activity (51 U/ml) was obtained after 6 h of cultivation on tryptone (10 g/L), yeast extract (10 g/L), NaCl (8.125 g/L), pH 7.5 with initial OD (0.15). The PLCBc activity, esteemed by the model (51 U) was very approximate to activity gutted experimentally (50 U). The PLCBc can be considered as thermoactive phospholipase since it showed a maximal activity of 50 U/mL at 60 °C using egg yolk or egg phosphatidylcholine (PC) as substrate. In addition, the enzyme was active at pH 7 and is stable after incubation at 55 °C for 30 min. The application of B. cereus phospholipase C in soybean oil degumming was investigated. Our results showed that when using enzymatic degumming, the residual phosphorus decrease more than with water degumming, indeed, it passes from 718 ppm in soybean crude oil to 100 ppm and 52 ppm by degumming using water and enzymatic process, respectively. The diacylgycerol (DAG) yield showed an increase of 1.2% with enzymatic degumming compared to soybean crude oil. This makes our enzyme a potential candidate for food industrial applications such as enzymatic degumming of vegetable oils.
Assuntos
Petróleo , Óleo de Soja , Fosfolipases Tipo C , Bacillus cereus , Fosfolipases , ÁguaRESUMO
We describe the discovery of an archaeal virus, one that infects archaea, tentatively named Thermoproteus spherical piliferous virus 1 (TSPV1), which was purified from a Thermoproteales host isolated from a hot spring in Yellowstone National Park (USA). TSPV1 packages an 18.65-kb linear double-stranded DNA (dsDNA) genome with 31 open reading frames (ORFs), whose predicted gene products show little homology to proteins with known functions. A comparison of virus particle morphologies and gene content demonstrates that TSPV1 is a new member of the Globuloviridae family of archaeal viruses. However, unlike other Globuloviridae members, TSPV1 has numerous highly unusual filaments decorating its surface, which can extend hundreds of nanometers from the virion. To our knowledge, similar filaments have not been observed in any other archaeal virus. The filaments are remarkably stable, remaining intact across a broad range of temperature and pH values, and they are resistant to chemical denaturation and proteolysis. A major component of the filaments is a glycosylated 35-kDa TSPV1 protein (TSPV1 GP24). The filament protein lacks detectable homology to structurally or functionally characterized proteins. We propose, given the low host cell densities of hot spring environments, that the TSPV1 filaments serve to increase the probability of virus attachment and entry into host cells.IMPORTANCE High-temperature environments have proven to be an important source for the discovery of new archaeal viruses with unusual particle morphologies and gene content. Our isolation of Thermoproteus spherical piliferous virus 1 (TSPV1), with numerous filaments extending from the virion surface, expands our understanding of viral diversity and provides new insight into viral replication in high-temperature environments.
Assuntos
Vírus de Archaea , Vírus de DNA , DNA Viral , Thermoproteus/virologia , Proteínas Virais , Vírus de Archaea/classificação , Vírus de Archaea/genética , Vírus de Archaea/metabolismo , Vírus de DNA/classificação , Vírus de DNA/genética , Vírus de DNA/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Thermoproteus/genética , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
In this paper, we study linear and nonlinear fractional eigenvalue problems involving the Atangana-Baleanu fractional derivative of the order 1<δ<2. We first estimate the fractional derivative of a function at its extreme points and apply it to obtain a maximum principle for the linear fractional boundary value problem. We then estimate the eigenvalues of the nonlinear eigenvalue problem and obtain necessary conditions to guarantee the existence of eigenfunctions. We also obtain a uniqueness result and a norm estimate of solutions of the linear problem. The obtained maximum principle and results are based on a condition that connects the boundary conditions, the order of the fractional derivative, and the Mittag-Leffler kernel. This condition is different from the ones obtained in previous results with different types of fractional derivatives.
RESUMO
BACKGROUND: [FeFe]-hydrogenases (Hyd) are structurally diverse enzymes that catalyze the reversible oxidation of hydrogen (H2). Recent biochemical data demonstrate new functional roles for these enzymes, including those that function in electron bifurcation where an exergonic reaction is coupled with an endergonic reaction to drive the reversible oxidation/production of H2. METHODS: To identify the structural determinants that underpin differences in enzyme functionality, a total of 714 homologous sequences of the catalytic subunit, HydA, were compiled. Bioinformatics approaches informed by biochemical data were then used to characterize differences in inferred quaternary structure, HydA active site protein environment, accessory iron-sulfur clusters in HydA, and regulatory proteins encoded in HydA gene neighborhoods. RESULTS: HydA homologs were clustered into one of three classification groups, Group 1 (G1), Group 2 (G2), and Group 3 (G3). G1 enzymes were predicted to be monomeric while those in G2 and G3 were predicted to be multimeric and include HydB, HydC (G2/G3) and HydD (G3) subunits. Variation in the HydA active site and accessory iron-sulfur clusters did not vary by group type. Group-specific regulatory genes were identified in the gene neighborhoods of both G2 and G3 Hyd. Analyses of purified G2 and G3 enzymes by mass spectrometry strongly suggest that they are post-translationally modified by phosphorylation. CONCLUSIONS: These results suggest that bifurcation capability is dictated primarily by the presence of both HydB and HydC in Hyd complexes, rather than by variation in HydA. GENERAL SIGNIFICANCE: This classification scheme provides a framework for future biochemical and mutagenesis studies to elucidate the functional role of Hyd enzymes.
Assuntos
Proteínas de Bactérias/metabolismo , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Sequência de Aminoácidos , Catálise , Domínio Catalítico , Transporte de Elétrons/fisiologia , Hidrogênio/metabolismo , Ferro/metabolismo , Oxirredução , Fosforilação/fisiologia , Processamento de Proteína Pós-Traducional/fisiologiaRESUMO
Extensive herbicide usage has led to the evolution of resistant weed populations that cause substantial crop yield losses and increase production costs. The multiple herbicide resistant (MHR) Avena fatua L. populations utilized in this study are resistant to members of all selective herbicide families, across five modes of action, available for A. fatua control in U.S. small grain production, and thus pose significant agronomic and economic threats. Resistance to ALS and ACCase inhibitors is not conferred by target site mutations, indicating that non-target site resistance mechanisms are involved. To investigate the potential involvement of glutathione-related enzymes in the MHR phenotype, we used a combination of proteomic, biochemical, and immunological approaches to compare their constitutive activities in herbicide susceptible (HS1 and HS2) and MHR (MHR3 and MHR4) A. fatua plants. Proteomic analysis identified three tau and one phi glutathione S-transferases (GSTs) present at higher levels in MHR compared to HS plants, while immunoassays revealed elevated levels of lambda, phi, and tau GSTs. GST specific activity towards 1-chloro-2,4-dinitrobenzene was 1.2-fold higher in MHR4 than in HS1 plants and 1.3- and 1.2-fold higher in MHR3 than in HS1 and HS2 plants, respectively. However, GST specific activities towards fenoxaprop-P-ethyl and imazamethabenz-methyl were not different between untreated MHR and HS plants. Dehydroascorbate reductase specific activity was 1.4-fold higher in MHR than HS plants. Pretreatment with the GST inhibitor NBD-Cl did not affect MHR sensitivity to fenoxaprop-P-ethyl application, while the herbicide safener and GST inducer mefenpyr reduced the efficacy of low doses of fenoxaprop-P-ethyl on MHR4 but not MHR3 plants. Mefenpyr treatment also partially reduced the efficacy of thiencarbazone-methyl or mesosulfuron-methyl on MHR3 or MHR4 plants, respectively. Overall, the GSTs described here are not directly involved in enhanced rates of fenoxaprop-P-ethyl or imazamethabenz-methyl metabolism in MHR A. fatua. Instead, we propose that the constitutively elevated GST proteins and related enzymes in MHR plants are representative of a larger, more global suite of abiotic stress-related changes.
Assuntos
Avena/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa/metabolismo , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Proteômica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
GI stromal tumors (GISTs) are the most common mesenchymal neoplasms in the GI tract. GISTs are malignancies that typically originate in the digestive system, most often in the stomach and small intestine. Histopathological classification identifies three types of GISTs: spindle cell, epithelioid, and mixed. We present a case of a huge intra-abdominal retroperitoneal mass in a 23-year-old female with no notable medical or surgical history. She experienced dysphagia and early satiety for one year but did not seek medical attention until presenting at our clinic. Her abdomen was distended, soft, and firm, with a huge non-tender mass. Abdominal CT revealed a substantial left retroperitoneal soft tissue lesion measuring 17 × 12 × 21 cm, causing a significant mass effect. An exploratory laparotomy via a thoracoabdominal approach was performed. A definitive diagnosis required surgical intervention or tissue biopsy. This case highlights the rarity of spindle cell neoplasms and underscores the importance of maintaining a high index of suspicion for such tumors in young adults.
RESUMO
Inflammatory myofibroblastic tumors (IMTs) of the lung are a rare type of mesenchymal tumors that tend to occur more in the lungs of children. They are extremely rare in adults. IMTs require extensive pulmonary resection because they are commonly locally invasive. The key to preventing recurrence is complete resection, and the prognosis is excellent after surgery. We report a case of a patient with an inflammatory pseudotumor of the lung. The patient is a 27-year-old female who presented with a dry cough. A chest radiograph and computed tomography showed a lesion in the left main bronchus and near-total left lung collapse. As surgery was necessary to establish the diagnosis, left pneumonectomy was performed followed by a histological examination of the surgical specimen which confirmed inflammatory pseudotumor.
RESUMO
A wide range of histological as well as clinical properties are exhibited by B-cell non-Hodgkin's lymphomas. These properties could make the diagnostics process complicated. The diagnosis of lymphomas at an initial stage is essential because early remedial actions taken against destructive subtypes are commonly deliberated as successful and restorative. Therefore, better protective action is needed to improve the condition of those patients who are extensively affected by cancer when diagnosed for the first time. The development of new and efficient methods for early detection of cancer has become crucial nowadays. Biomarkers are urgently needed for diagnosing B-cell non-Hodgkin's lymphoma and assessing the severity of the disease and its prognosis. New possibilities are now open for diagnosing cancer with the help of metabolomics. The study of all the metabolites synthesised in the human body is called "metabolomics." A patient's phenotype is directly linked with metabolomics, which can help in providing some clinically beneficial biomarkers and is applied in the diagnostics of B-cell non-Hodgkin's lymphoma. In cancer research, it can analyse the cancerous metabolome to identify the metabolic biomarkers. This review provides an understanding of B-cell non-Hodgkin's lymphoma metabolism and its applications in medical diagnostics. A description of the workflow based on metabolomics is also provided, along with the benefits and drawbacks of various techniques. The use of predictive metabolic biomarkers for the diagnosis and prognosis of B-cell non-Hodgkin's lymphoma is also explored. Thus, we can say that abnormalities related to metabolic processes can occur in a vast range of B-cell non-Hodgkin's lymphomas. The metabolic biomarkers could only be discovered and identified as innovative therapeutic objects if we explored and researched them. In the near future, the innovations involving metabolomics could prove fruitful for predicting outcomes and bringing out novel remedial approaches.
RESUMO
Quorum sensing inhibitor (QSI) has been attracting attention as anti-virulence agent which disarms pathogens of their virulence rather than killing them. QSI marking cyclic peptide-mediated QS in Gram-positive bacteria is an effective tool to overcome the crisis of antibiotic-dependent chemotherapy due to the emergence of drug resistance strain, e.g., methicillin resistant Staphylococcus aureus (MRSA) and Vancomycin resistant Enterococci (VRE). From a semi-large-scale screening thus far carried out, two Epoxide compounds, Ambuic acid and Synerazol, have been found to efficiently block agr and fsr QS systems, suggesting that the Epoxide group is involved in the mode of action of these QSIs. To address this notion, known natural Epoxide compounds, Cerulenin and Fosfomycin were examined for QSI activity for the agr and fsr systems in addition to in silico and SAR studies. As a result, most of investigated Epoxide containing antibiotics correlatively interfere with QSI activity for the agr and fsr systems under sublethal concentrations.
RESUMO
The coast of the Red Sea in Jeddah City is home to a unique microbial community that has adapted to extreme environmental conditions. Therefore, it is essential to characterize the microbial community in this unique microbiome to predict how environmental changes will affect it. The aim of this study was to conduct metagenomic sequencing of 16S rRNA and ITS rRNA genes for the taxonomic classification of the microbial community in soil samples associated with the halophytic plants Tamarix aphylla and Halopeplis perfoliata. Fifteen soil samples were collected in triplicate to enhance robustness and minimize sampling bias. Firstly, to identify novel microbial candidates, the gDNAs were isolated from the saline soil samples surrounding each plant, and then bacterial 16S (V3-V4) and fungal ITS1 regions were sequenced utilizing a high-throughput approach (next-generation sequencing; NGS) on an Illumina MiSeq platform. Quality assessment of the constructed amplicon libraries was conducted using Agilent Bioanalyzer and fluorometric quantification methods. The raw data were processed and analyzed using the Pipeline (Nova Lifetech, Singapore) for bioinformatics analysis. Based on the total number of readings, it was determined that the phylum Actinobacteriota was the most prevalent in the soil samples examined, followed by the phylum Proteobacteria. Based on ITS rRNA gene analysis, the alpha and beta fungal diversity in the studied soil samples revealed that the fungal population is structured into various groups according to the crust (c) and/or rhizosphere (r) plant parts. Fungal communities in the soil samples indicated that Ascomycota and Basidiomycota were the two most abundant phyla based on the total amount of sequence reads. Secondly, heat-map analysis of the diversity indices showed that the bacterial alpha diversity, as measured by Shannon, Simpson, and InvSimpson, was associated with soil crust (Hc and Tc enclosing H. perfoliata and T. aphylla, respectively) and that the soil rhizosphere (Hr and Tr) was strongly correlated with bacterial beta diversity. Finally, fungal-associated Tc and Hc samples clustered together, according to observations made using the Fisher and Chao1 methods, and Hr and Tr samples clustered together according to Shannon, Simpson, and InvSimpson analyses. As a result of the soil investigation, potential agents that have been identified could lead to innovative agricultural, medical, and industrial applications.
RESUMO
Introduction: The study aims to describe phageome of soil rhizosphere of M.oleifera in terms of the genes encoding CAZymes and other KEGG enzymes. Methods: Genes of the rhizospheric virome of the wild plant species Moringa oleifera were investigated for their ability to encode useful CAZymes and other KEGG (Kyoto Encyclopedia of Genes and Genomes) enzymes and to resist antibiotic resistance genes (ARGs) in the soil. Results: Abundance of these genes was higher in the rhizospheric microbiome than in the bulk soil. Detected viral families include the plant viral family Potyviridae as well as the tailed bacteriophages of class Caudoviricetes that are mainly associated with bacterial genera Pseudomonas, Streptomyces and Mycobacterium. Viral CAZymes in this soil mainly belong to glycoside hydrolase (GH) families GH43 and GH23. Some of these CAZymes participate in a KEGG pathway with actions included debranching and degradation of hemicellulose. Other actions include biosynthesizing biopolymer of the bacterial cell wall and the layered cell wall structure of peptidoglycan. Other CAZymes promote plant physiological activities such as cell-cell recognition, embryogenesis and programmed cell death (PCD). Enzymes of other pathways help reduce the level of soil H2O2 and participate in the biosynthesis of glycine, malate, isoprenoids, as well as isoprene that protects plant from heat stress. Other enzymes act in promoting both the permeability of bacterial peroxisome membrane and carbon fixation in plants. Some enzymes participate in a balanced supply of dNTPs, successful DNA replication and mismatch repair during bacterial cell division. They also catalyze the release of signal peptides from bacterial membrane prolipoproteins. Phages with the most highly abundant antibiotic resistance genes (ARGs) transduce species of bacterial genera Pseudomonas, Streptomyces, and Mycobacterium. Abundant mechanisms of antibiotic resistance in the rhizosphere include "antibiotic efflux pump" for ARGs soxR, OleC, and MuxB, "antibiotic target alteration" for parY mutant, and "antibiotic inactivation" for arr-1. Discussion: These ARGs can act synergistically to inhibit several antibiotics including tetracycline, penam, cephalosporin, rifamycins, aminocoumarin, and oleandomycin. The study highlighted the issue of horizontal transfer of ARGs to clinical isolates and human gut microbiome.
RESUMO
A metagenomic whole genome shotgun sequencing approach was used for rhizospheric soil micribiome of the wild plant Abutilon fruticosum in order to detect antibiotic resistance genes (ARGs) along with their antibiotic resistance mechanisms and to detect potential risk of these ARGs to human health upon transfer to clinical isolates. The study emphasized the potential risk to human health of such human pathogenic or commensal bacteria, being transferred via food chain or horizontally transferred to human clinical isolates. The top highly abundant rhizospheric soil non-redundant ARGs that are prevalent in bacterial human pathogens or colonizers (commensal) included mtrA, soxR, vanRO, golS, rbpA, kdpE, rpoB2, arr-1, efrA and ileS genes. Human pathogenic/colonizer bacteria existing in this soil rhizosphere included members of genera Mycobacterium, Vibrio, Klebsiella, Stenotrophomonas, Pseudomonas, Nocardia, Salmonella, Escherichia, Citrobacter, Serratia, Shigella, Cronobacter and Bifidobacterium. These bacteria belong to phyla Actinobacteria and Proteobacteria. The most highly abundant resistance mechanisms included antibiotic efflux pump, antibiotic target alteration, antibiotic target protection and antibiotic inactivation. antimicrobial resistance (AMR) families of the resistance mechanism of antibiotic efflux pump included resistance-nodulation-cell division (RND) antibiotic efflux pump (for mtrA, soxR and golS genes), major facilitator superfamily (MFS) antibiotic efflux pump (for soxR gene), the two-component regulatory kdpDE system (for kdpE gene) and ATP-binding cassette (ABC) antibiotic efflux pump (for efrA gene). AMR families of the resistance mechanism of antibiotic target alteration included glycopeptide resistance gene cluster (for vanRO gene), rifamycin-resistant beta-subunit of RNA polymerase (for rpoB2 gene) and antibiotic-resistant isoleucyl-tRNA synthetase (for ileS gene). AMR families of the resistance mechanism of antibiotic target protection included bacterial RNA polymerase-binding protein (for RbpA gene), while those of the resistance mechanism of antibiotic inactivation included rifampin ADP-ribosyltransferase (for arr-1 gene). Better agricultural and food transport practices are required especially for edible plant parts or those used in folkloric medicine.
RESUMO
Triple-negative breast cancer (TNBC) subtype is characterized by aggressive clinical behavior and poor prognosis patient outcomes. Here, we show that ADAR1 is more abundantly expressed in infiltrating breast cancer (BC) tumors than in benign tumors. Further, ADAR1 protein expression is higher in aggressive BC cells (MDA-MB-231). Moreover, we identify a novel interacting partners proteins list with ADAR1 in MDA-MB-231, using immunoprecipitation assay and mass spectrometry. Using iLoop, a protein-protein interaction prediction server based on structural features, five proteins with high iloop scores were discovered: Histone H2A.V, Kynureninase (KYNU), 40S ribosomal protein SA, Complement C4-A, and Nebulin (ranged between 0.6 and 0.8). In silico analysis showed that invasive ductal carcinomas had the highest level of KYNU gene expression than the other classifications (p < 0.0001). Moreover, KYNU mRNA expression was shown to be considerably higher in TNBC patients (p < 0.0001) and associated with poor patient outcomes with a high-risk value. Importantly, we found an interaction between ADAR1 and KYNU in the more aggressive BC cells. Altogether, these results propose a new ADAR-KYNU interaction as potential therapeutic targeted therapy in aggressive BC.
Assuntos
Adenosina Desaminase , Proteínas de Ligação a RNA , Neoplasias de Mama Triplo Negativas , Humanos , Agressão , Mama , Complemento C4 , Histonas , Neoplasias de Mama Triplo Negativas/patologia , Adenosina Desaminase/metabolismo , Proteínas de Ligação a RNA/metabolismoRESUMO
Breast cancer is one of the most serious problems in oncology. We investigated the antitumor potential of lycopene (Lyco) alone or combined with tocopherol (Lyco + Toco) for 90 days against a single oral dose of (50 mg/kg body weight) 7,12-dimethyl[a]benzanthracene (DMBA)-induced oxidative stress and mammary carcinogenesis in female rats. The treatment protocol started from the day immediately after DMBA administration. Results obtained indicated that there was a significant elevation in the levels of malondialdehyde (MDA) and nitric oxide (NO) in serum and breast tissues of DMBA-injected rats. The combined treatment (Lyco + Toco) group showed a potential reduction of these parameters more than Lyco alone group. The activities of superoxide dismutase, catalase, and glutathione peroxidase were found to be significantly higher when compared to rats treated with Lyco alone. In DMBA group, a positive significant correlation between NO and MDA (r = 0.92) was observed. Histopathological examination revealed the formation of tumor and angiogenesis in DMBA-induced rats and these abnormal changes were ameliorated by combined treatment with Lyco + Toco. In conclusion, these results suggested that supplementation of diet with Lyco and Toco provided antioxidant defense, with strong chemopreventive activity against DMBA-induced mammary tumors.
Assuntos
Antioxidantes/farmacologia , Carotenoides/farmacologia , Neoplasias Mamárias Animais/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Tocoferóis/farmacologia , 9,10-Dimetil-1,2-benzantraceno , Animais , Peso Corporal/efeitos dos fármacos , Catalase/metabolismo , Sinergismo Farmacológico , Feminino , Glutationa Peroxidase/metabolismo , Licopeno , Malondialdeído/sangue , Neoplasias Mamárias Animais/induzido quimicamente , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Óxido Nítrico/sangue , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Tocoferóis/uso terapêuticoRESUMO
Moringa oleifera (or the miracle tree) is a wild plant species widely grown for its seed pods and leaves, and is used in traditional herbal medicine. The metagenomic whole genome shotgun sequencing (mWGS) approach was used to characterize antibiotic resistance genes (ARGs) of the rhizobiomes of this wild plant and surrounding bulk soil microbiomes and to figure out the chance and consequences for highly abundant ARGs, e.g., mtrA, golS, soxR, oleC, novA, kdpE, vanRO, parY, and rbpA, to horizontally transfer to human gut pathogens via mobile genetic elements (MGEs). The results indicated that abundance of these ARGs, except for golS, was higher in rhizosphere of M. oleifera than that in bulk soil microbiome with no signs of emerging new soil ARGs in either soil type. The most highly abundant metabolic processes of the most abundant ARGs were previously detected in members of phyla Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, and Firmicutes. These processes refer to three resistance mechanisms namely antibiotic efflux pump, antibiotic target alteration and antibiotic target protection. Antibiotic efflux mechanism included resistance-nodulation-cell division (RND), ATP-binding cassette (ABC), and major facilitator superfamily (MFS) antibiotics pumps as well as the two-component regulatory kdpDE system. Antibiotic target alteration included glycopeptide resistance gene cluster (vanRO), aminocoumarin resistance parY, and aminocoumarin self-resistance parY. While, antibiotic target protection mechanism included RbpA bacterial RNA polymerase (rpoB)-binding protein. The study supports the claim of the possible horizontal transfer of these ARGs to human gut and emergence of new multidrug resistant clinical isolates. Thus, careful agricultural practices are required especially for plants used in circles of human nutrition industry or in traditional medicine.
RESUMO
The latest coronavirus pandemic (SARS-CoV-2) poses an exceptional threat to human health and society worldwide. The coronavirus (SARS-CoV-2) spike (S) protein, which is required for viral-host cell penetration, might be considered a promising and suitable target for treatment. In this study, we utilized the nonalkaloid fraction of the medicinal plant Rhazya stricta to computationally investigate its antiviral activity against SARS-CoV-2. Molecular docking and molecular dynamics simulations were the main tools used to examine the binding interactions of the compounds isolated by HPLC analysis. Ceftazidime was utilized as a reference control, which showed high potency against the SARS-CoV-2 receptor binding domain (RBD) in an in vitro study. The five compounds (CID:1, CID:2, CID:3, CID:4, and CID:5) exhibited remarkable binding affinities (CID:1, - 8.9; CID:2, - 8.7; and CID:3, 4, and 5, - 8.5 kcal/mol) compared to the control compound (- 6.2 kcal/mol). MD simulations over a period of 200 ns further corroborated that certain interactions occurred with the five compounds and the nonalkaloidal compounds retained their positions within the RBD active site. CID:2, CID:4, and CID:5 demonstrated high stability and less variance, while CID:1 and CID:3 were less stable than ceftazidime. The average number of hydrogen bonds formed per timeframe by CID:1, CID:2, CID:3, and CID:5 (0.914, 0.451, 1.566, and 1.755, respectively) were greater than that formed by ceftazidime (0.317). The total binding free energy calculations revealed that the five compounds interacted more strongly within RBD residues (CID:1 = - 68.8, CID:2 = - 71.6, CID:3 = - 74.9, CID:4 = - 75.4, CID:5 = - 60.9 kJ/mol) than ceftazidime (- 34.5 kJ/mol). The drug-like properties of the selected compounds were relatively similar to those of ceftazidime, and the toxicity predictions categorized these compounds into less toxic classes. Structural similarity and functional group analyses suggested that the presence of more H-acceptor atoms, electronegative atoms, acidic oxygen groups, and nitrogen atoms in amide or aromatic groups were common among the compounds with the lowest binding affinities. In conclusion, this in silico work predicts for the first time the potential of using five R. stricta nonalkaloid compounds as a treatment strategy to control SARS-CoV-2 viral entry.
Assuntos
Apocynaceae , Tratamento Farmacológico da COVID-19 , Plantas Medicinais , Ceftazidima , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2RESUMO
BACKGROUND: The newly identified betacoronavirus SARS-CoV-2 is the causative pathogen of the coronavirus disease of 2019 (COVID-19) that killed more than 3.5 million people till now. The cytokine storm induced in severe COVID-19 patients causes hyper-inflammation, is the primary reason for respiratory and multi-organ failure and fatality. This work uses a rational computational strategy to identify the existing drug molecules to target host pathways to reduce the cytokine storm. RESULTS: We used a "host response signature network" consist of 36 genes induced by SARS-CoV-2 infection and associated with cytokine storm. In order to attenuate the cytokine storm, potential drug molecules were searched against "host response signature network". Our study identified that drug molecule andrographolide, naturally present in a medicinal plant Andrographis paniculata, has the potential to bind with crucial proteins to block the TNF-induced NFkB1 signaling pathway responsible for cytokine storm in COVID-19 patients. The molecular docking method showed the binding of andrographolide with TNF and covalent binding with NFkB1 proteins of the TNF signaling pathway. CONCLUSION: We used a rational computational approach to repurpose existing drugs targeting host immunomodulating pathways. Our study suggests that andrographolide could bind with TNF and NFkB1 proteins, block TNF-induced cytokine storm in COVID-19 patients, and warrant further experimental validation.
Assuntos
Antivirais/farmacologia , COVID-19/imunologia , Síndrome da Liberação de Citocina/imunologia , Diterpenos/farmacologia , Desenvolvimento de Medicamentos/métodos , SARS-CoV-2/fisiologia , Andrographis/imunologia , Síndrome da Liberação de Citocina/tratamento farmacológico , Humanos , Simulação de Acoplamento Molecular , Subunidade p50 de NF-kappa B/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Tratamento Farmacológico da COVID-19RESUMO
The emergence of a new coronavirus (CoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for severe respiratory disease in humans termed coronavirus disease of 2019 (COVID-19), became a new global threat for health and the economy. The SARS-CoV-2 genome is about a 29,800-nucleotide-long plus-strand RNA that can form functionally important secondary and higher-order structures called cis-acting RNA elements. These elements can interact with viral proteins, host proteins, or other RNAs and be involved in regulating translation and replication processes of the viral genome and encapsidation of the virus. However, the cis-acting RNA elements and their biological roles in SARS-CoV-2 as well as their comparative analysis in the closely related viral genome have not been well explored, which is very important to understand the molecular mechanism of viral infection and pathogenies. In this study, we used a bioinformatics approach to identify the cis-acting RNA elements in the SARS-CoV-2 genome. Initially, we aligned the full genomic sequence of six different CoVs, and a phylogenetic analysis was performed to understand their evolutionary relationship. Next, we predicted the cis-acting RNA elements in the SARS-CoV-2 genome using the structRNAfinder tool. Then, we annotated the location of these cis-acting RNA elements in different genomic regions of SARS-CoV-2. After that, we analyzed the sequence conservation patterns of each cis-acting RNA element among the six CoVs. Finally, the presence of cis-acting RNA elements across different CoV genomes and their comparative analysis was performed. Our study identified 12 important cis-acting RNA elements in the SARS-CoV-2 genome; among them, Corona_FSE, Corona_pk3, and s2m are highly conserved across most of the studied CoVs, and Thr_leader, MAT2A_D, and MS2 are uniquely present in SARS-CoV-2. These RNA structure elements can be involved in viral translation, replication, and encapsidation and, therefore, can be potential targets for better treatment of COVID-19. It is imperative to further characterize these cis-acting RNA elements experimentally for a better mechanistic understanding of SARS-CoV-2 infection and therapeutic intervention.