Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Biol Sci ; 282(1816): 20151651, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26423845

RESUMO

Phenotypic plasticity is the ability of a genotype to produce more than one phenotype in order to match the environment. Recent theory proposes that the major axis of genetic variation in a phenotypically plastic population can align with the direction of selection. Therefore, theory predicts that plasticity directly aids adaptation by increasing genetic variation in the direction favoured by selection and reflected in plasticity. We evaluated this theory in the freshwater crustacean Daphnia pulex, facing predation risk from two contrasting size-selective predators. We estimated plasticity in several life-history traits, the G matrix of these traits, the selection gradients on reproduction and survival, and the predicted responses to selection. Using these data, we tested whether the genetic lines of least resistance and the predicted response to selection aligned with plasticity. We found predator environment-specific G matrices, but shared genetic architecture across environments resulted in more constraint in the G matrix than in the plasticity of the traits, sometimes preventing alignment of the two. However, as the importance of survival selection increased, the difference between environments in their predicted response to selection increased and resulted in closer alignment between the plasticity and the predicted selection response. Therefore, plasticity may indeed aid adaptation to new environments.


Assuntos
Daphnia/anatomia & histologia , Daphnia/genética , Variação Genética , Fenótipo , Seleção Genética , Adaptação Biológica , Animais , Cadeia Alimentar
2.
Proc Biol Sci ; 281(1783): 20133259, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24695427

RESUMO

The extent of female multiple mating (polyandry) can strongly impact on the intensity of sexual selection, sexual conflict, and the evolution of cooperation and sociality. More subtly, polyandry may protect populations against intragenomic conflicts that result from the invasion of deleterious selfish genetic elements (SGEs). SGEs commonly impair sperm production, and so are likely to be unsuccessful in sperm competition, potentially reducing their transmission in polyandrous populations. Here, we test this prediction in nature. We demonstrate a heritable latitudinal cline in the degree of polyandry in the fruitfly Drosophila pseudoobscura across the USA, with northern population females remating more frequently in both the field and the laboratory. High remating was associated with low frequency of a sex-ratio-distorting meiotic driver in natural populations. In the laboratory, polyandry directly controls the frequency of the driver by undermining its transmission. Hence we suggest that the cline in polyandry represents an important contributor to the cline in sex ratio in nature. Furthermore, as the meiotic driver causes sex ratio bias, variation in polyandry may ultimately determine population sex ratio across the USA, a dramatic impact of female mating decisions. As SGEs are ubiquitous it is likely that the reduction of intragenomic conflict by polyandry is widespread.


Assuntos
Drosophila/fisiologia , Genoma de Inseto , Preferência de Acasalamento Animal , Meiose , Razão de Masculinidade , Animais , DNA/genética , Drosophila/genética , Feminino , Padrões de Herança , Masculino , Sequências Repetitivas de Ácido Nucleico
3.
Nat Ecol Evol ; 2(1): 100-107, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29180709

RESUMO

Phenotypic plasticity is the ability of an individual genotype to alter aspects of its phenotype depending on the current environment. It is central to the persistence, resistance and resilience of populations facing variation in physical or biological factors. Genetic variation in plasticity is pervasive, which suggests its local adaptation is plausible. Existing studies on the adaptation of plasticity typically focus on single traits and a few populations, while theory about interactions among genes (for example, pleiotropy) suggests that a multi-trait, landscape scale (for example, multiple populations) perspective is required. We present data from a landscape scale, replicated, multi-trait experiment using a classic predator-prey system centred on the water flea Daphnia pulex. We find predator regime-driven differences in genetic variation of multivariate plasticity. These differences are associated with strong divergent selection linked to a predation regime. Our findings are evidence for local adaptation of plasticity, suggesting that responses of populations to environmental variation depend on the conditions in which they evolved in the past.


Assuntos
Adaptação Biológica , Daphnia/fisiologia , Variação Genética , Fenótipo , Animais , Evolução Biológica , Daphnia/genética , Cadeia Alimentar , Comportamento Predatório
4.
Trends Ecol Evol ; 25(12): 705-12, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20952088

RESUMO

Understanding the genetics of how organisms adapt to changing environments is a fundamental topic in modern evolutionary ecology. The field is currently progressing rapidly because of advances in genomics technologies, especially DNA sequencing. The aim of this review is to first briefly summarise how next generation sequencing (NGS) has transformed our ability to identify the genes underpinning adaptation. We then demonstrate how the application of these genomic tools to ecological model species means that we can start addressing some of the questions that have puzzled ecological geneticists for decades such as: How many genes are involved in adaptation? What types of genetic variation are responsible for adaptation? Does adaptation utilise pre-existing genetic variation or does it require new mutations to arise following an environmental change?


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Genômica/métodos , Animais , Plantas
5.
PLoS One ; 5(12): e15693, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21203527

RESUMO

Burkholderia pseudomallei is an important human pathogen whose infection biology is still poorly understood. The bacterium is endemic to tropical regions, including South East Asia and Northern Australia, where it causes melioidosis, a serious disease associated with both high mortality and antibiotic resistance. B. pseudomallei is a Gram-negative facultative intracellular pathogen that is able to replicate in macrophages. However despite the critical nature of its interaction with macrophages, few anti-macrophage factors have been characterized to date. Here we perform a genome-wide gain of function screen of B. pseudomallei strain K96243 to identify loci encoding factors with anti-macrophage activity. We identify a total of 113 such loci scattered across both chromosomes, with positive gene clusters encoding transporters and secretion systems, enzymes/toxins, secondary metabolite, biofilm, adhesion and signal response related factors. Further phenotypic analysis of four of these regions shows that the encoded factors cause striking cellular phenotypes relevant to infection biology, including apoptosis, formation of actin 'tails' and multi-nucleation within treated macrophages. The detailed analysis of the remaining host of loci will facilitate genetic dissection of the interaction of this important pathogen with host macrophages and thus further elucidate this critical part of its infection cycle.


Assuntos
Burkholderia pseudomallei/genética , Burkholderia pseudomallei/metabolismo , Estudo de Associação Genômica Ampla , Macrófagos/citologia , Animais , Mapeamento Cromossômico , Cromossomos/ultraestrutura , Cromossomos Artificiais Bacterianos , Biblioteca Gênica , Genoma Bacteriano , Humanos , Camundongos , Modelos Genéticos , Família Multigênica , Fenótipo , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA