Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37050471

RESUMO

Cardiac wireless implantable medical devices (CWIMD) have brought a paradigm shift in monitoring and treating various cardiac conditions, including heart failure, arrhythmias, and hypertension. One of the key elements in CWIMD is the implant antenna which uses radio frequency (RF) technology to wirelessly communicate and transmit data to external devices. However, wireless communication with a deeply implanted antenna using RF can be challenging due to the significant loss of electromagnetic (EM) signal at the air-skin interface, and second, due to the propagation and reflection of EM waves from different tissue boundaries. The air-skin interface loss of the EM wave is pronounced due to the absence of a matching medium. This paper investigates the EM propagation losses in the human body and presents a choice of optimal frequency for the design of the cardiac implant antenna and the dielectric properties of the matching medium. First, the dielectric properties of all tissues present in the human thorax including skin, fat, muscle, cartilage, and heart are analyzed as a function of frequency to study the EM wave absorption at different frequencies. Second, the penetration of EM waves inside the biological tissues is analyzed as a function of frequency. Third, a transmission line (TL) formalism approach is adopted to examine the optimal frequency band for designing a cardiac implant antenna and the matching medium for the air-skin interface. Finally, experimental validation is performed at two ISM frequencies, 433 MHz and 915 MHz, selected from the optimal frequency band (0.4-1.5 GHz) suggested by our analytical investigation. For experimental validation, two off-the-shelf flexible dipole antennas operating at selected ISM frequencies were used. The numerical and experimental findings suggested that for the specific application of a cardiac implant with a penetration depth of 7-17 cm, the most effective frequency range for operation is within 0.4-1.5 GHz. The findings based on the dielectric properties of thorax tissues, the penetration depth of EM waves, and the optimal frequency band have provided valuable information on developing and optimizing CWIMDs for cardiac care applications.


Assuntos
Coração , Próteses e Implantes , Humanos , Estudos de Viabilidade , Arritmias Cardíacas , Ondas de Rádio , Tecnologia sem Fio
2.
Sensors (Basel) ; 22(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36366097

RESUMO

The wireless monitoring of key physiological parameters such as heart rate, respiratory rate, temperature, and pressure can aid in preventive healthcare, early diagnosis, and patient-tailored treatment. In wireless implantable sensors, the distance between the sensor and the reader device is prone to be influenced by the operating frequency, as well as by the medium between the sensor and the reader. This manuscript presents an ex vivo investigation of the wireless linkage between an implantable sensor and an external reader for medical applications. The sensor was designed and fabricated using a cost-effective and accessible fabrication process. The sensor is composed of a circular planar inductor (L) and a circular planar capacitor (C) to form an inductor-capacitor (LC) resonance tank circuit. The reader system comprises a readout coil and data acquisition instrumentation. To investigate the effect of biological medium on wireless linkage, the readout distance between the sensor and the readout coil was examined independently for porcine and ovine tissues. In the bench model, to mimic the bio-environment for the investigation, skin, muscle, and fat tissues were used. The relative magnitude of the reflection coefficient (S11) at the readout coil was used as a metric to benchmark wireless linkage. A readable linkage signal was observed on the readout coil when the sensor was held up to 2.5 cm under layers of skin, muscle, and fat tissue. To increase the remote readout distance of the LC sensor, the effect of the repeater coil was also investigated. The experimental results showed that the magnitude of the reflection coefficient signal was increased 3-3.5 times in the presence of the repeater coil, thereby increasing the signal-to-noise ratio of the detected signal. Therefore, the repeater coil between the sensor and the readout coil allows a larger sensing range for a variety of applications in implanted or sealed fields.


Assuntos
Próteses e Implantes , Tecnologia sem Fio , Animais , Ovinos , Suínos , Vibração
3.
Sensors (Basel) ; 21(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513916

RESUMO

This paper presents an adaptive control and communication protocol (ACCP) for the ultra-low power simultaneous wireless information and power transfer (SWIPT) system for sensor applications. The SWIPT system-related operations depend on harvested radio frequency (RF) energy from the ambient environment. The necessary power for SWIPT system operation is not always available and it depends on the available RF energy in the ambient environment, transmitted RF power from the SWIPT transmitter, and the distance from the transmitter and channel conditions. Thus, an efficient control and communication protocol is required which can control the SWIPT system for sensor applications which mainly consists of a transmitter and a receiver. Multiple data frame structures are used to optimize the exchange of bits for the communication and control of the SWIPT system. Both SWIPT transmitter and receiver are capable of using multiple modulation schemes which can be switched depending on the channel condition and the available RF energy in the ambient environment. This provides support for automatic switching between the time switching scheme and power splitting scheme for the distribution of received RF power in the SWIPT receiver. It also adjusts the digital clock frequency at the SWIPT receiver according to the harvested power level to optimize the power consumption. The SWIPT receiver controller with ACCP is implemented in 180 nm CMOS technology. The RF frequency of the SWIPT operation is 5.8 GHz. Digital clock frequency at the SWIPT receiver can be adjusted between 32 kHz and 2 MHz which provides data rates from 8 to 500 kbps, respectively. The power consumption and area utilization are 12.3 µW and 0.81 mm².

4.
Sensors (Basel) ; 20(14)2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32707685

RESUMO

In this article, a highly reliable radio frequency (RF) wake-up receiver (WuRx) is presented for electronic toll collection (ETC) applications. An intelligent digital controller (IDC) is proposed as the final stage for improving WuRx reliability and replacing complex analog blocks. With IDC, high reliability and accuracy are achieved by sensing and ensuring the successive, configurable number of wake-up signal cycles before enabling power-hungry RF transceiver. The IDC and range communication (RC) oscillator current consumption is reduced by a presented self-hibernation technique during the non-wake-up period. For accommodating wake-up signal frequency variation and enhancing WuRx accuracy, a digital hysteresis is incorporated. To avoid uncertain conditions during poor and false wake-up, a watch-dog timer for IDC self-recovery is integrated. During wake-up, the digital controller consumes 34.62 nW power and draws 38.47 nA current from a 0.9 V supply. In self-hibernation mode, its current reduces to 9.7 nA. It is fully synthesizable and needs 809 gates for its implementation in a 130 nm CMOS process with a 94 × 82 µm2 area. The WuRx measured power consumption is 2.48 µW, has -46 dBm sensitivity, and a 0.484 mm² chip area.

5.
Sensors (Basel) ; 20(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937979

RESUMO

Recently, piezoresistive-type (PRT) pressure sensors have been gaining attention in variety of applications due to their simplicity, low cost, miniature size and ruggedness. The electrical behavior of a pressure sensor is highly dependent on the temperature gradient which seriously degrades its reliability and reduces measurement accuracy. In this paper, polynomial-based adaptive digital temperature compensation is presented for automotive piezoresistive pressure sensor applications. The non-linear temperature dependency of a pressure sensor is accurately compensated for by incorporating opposite characteristics of the pressure sensor as a function of temperature. The compensation polynomial is fully implemented in a digital system and a scaling technique is introduced to enhance its accuracy. The resource sharing technique is adopted for minimizing controller area and power consumption. The negative temperature coefficient (NTC) instead of proportional to absolute temperature (PTAT) or complementary to absolute temperature (CTAT) is used as the temperature-sensing element since it offers the best temperature characteristics for grade 0 ambient temperature operating range according to the automotive electronics council (AEC) test qualification ACE-Q100. The shared structure approach uses an existing analog signal conditioning path, composed of a programmable gain amplifier (PGA) and an analog-to-digital converter (ADC). For improving the accuracy over wide range of temperature, a high-resolution sigma-delta ADC is integrated. The measured temperature compensation accuracy is within ±0.068% with full scale when temperature varies from -40 °C to 150 °C according to ACE-Q100. It takes 37 µs to compute the temperature compensation with a clock frequency of 10 MHz. The proposed technique is integrated in an automotive pressure sensor signal conditioning chip using a 180 nm complementary metal-oxide-semiconductor (CMOS) process.

6.
Sensors (Basel) ; 18(5)2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29757996

RESUMO

In this paper, a low-power and small-area Single Edge Nibble Transmission (SENT) transmitter design is proposed for automotive pressure and temperature complex sensor applications. To reduce the cost and size of the hardware, the pressure and temperature information is processed with a single integrated circuit (IC) and transmitted at the same time to the electronic control unit (ECU) through SENT. Due to its digital nature, it is immune to noise, has reduced sensitivity to electromagnetic interference (EMI), and generates low EMI. It requires only one PAD for its connectivity with ECU, and thus reduces the pin requirements, simplifies the connectivity, and minimizes the printed circuit board (PCB) complexity. The design is fully synthesizable, and independent of technology. The finite state machine-based approach is employed for area efficient implementation, and to translate the proposed architecture into hardware. The IC is fabricated in 1P6M 180 nm CMOS process with an area of (116 µm × 116 µm) and 4.314 K gates. The current consumption is 50 µA from a 1.8 V supply with a total 90 µW power. For compliance with AEC-Q100 for automotive reliability, a reverse and over voltage protection circuit is also implemented with human body model (HBM) electro-static discharge (ESD) of +6 kV, reverse voltage of -16 V to 0 V, over voltage of 8.2 V to 16 V, and fabricated area of 330 µm × 680 µm. The extensive testing, measurement, and simulation results prove that the design is fully compliant with SAE J2716 standard.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA