RESUMO
Understanding how microscopic spin configuration gives rise to exotic properties at the macroscopic length scale has long been pursued in magnetic materials1-5. One seminal example is the Einstein-de Haas effect in ferromagnets1,6,7, in which angular momentum of spins can be converted into mechanical rotation of an entire object. However, for antiferromagnets without net magnetic moment, how spin ordering couples to macroscopic movement remains elusive. Here we observed a seesaw-like rotation of reciprocal lattice peaks of an antiferromagnetic nanolayer film, whose gigahertz structural resonance exhibits more than an order-of-magnitude amplification after cooling below the Néel temperature. Using a suite of ultrafast diffraction and microscopy techniques, we directly visualize this spin-driven rotation in reciprocal space at the nanoscale. This motion corresponds to interlayer shear in real space, in which individual micro-patches of the film behave as coherent oscillators that are phase-locked and shear along the same in-plane axis. Using time-resolved optical polarimetry, we further show that the enhanced mechanical response strongly correlates with ultrafast demagnetization, which releases elastic energy stored in local strain gradients to drive the oscillators. Our work not only offers the first microscopic view of spin-mediated mechanical motion of an antiferromagnet but it also identifies a new route towards realizing high-frequency resonators8,9 up to the millimetre band, so the capability of controlling magnetic states on the ultrafast timescale10-13 can be readily transferred to engineering the mechanical properties of nanodevices.
RESUMO
Understanding the interplay between charge, nematic, and structural ordering tendencies in cuprate superconductors is critical to unraveling their complex phase diagram. Using pump-probe time-resolved resonant X-ray scattering on the (0 0 1) Bragg peak at the Cu [Formula: see text] and O [Formula: see text] resonances, we investigate nonequilibrium dynamics of [Formula: see text] nematic order and its association with both charge density wave (CDW) order and lattice dynamics in La[Formula: see text]Eu[Formula: see text]Sr[Formula: see text]CuO[Formula: see text]. The orbital selectivity of the resonant X-ray scattering cross-section allows nematicity dynamics associated with the planar O 2[Formula: see text] and Cu 3[Formula: see text] states to be distinguished from the response of anisotropic lattice distortions. A direct time-domain comparison of CDW translational-symmetry breaking and nematic rotational-symmetry breaking reveals that these broken symmetries remain closely linked in the photoexcited state, consistent with the stability of CDW topological defects in the investigated pump fluence regime.
RESUMO
Topological quantum materials exhibit fascinating properties1-3, with important applications for dissipationless electronics and fault-tolerant quantum computers4,5. Manipulating the topological invariants in these materials would allow the development of topological switching applications analogous to switching of transistors6. Lattice strain provides the most natural means of tuning these topological invariants because it directly modifies the electron-ion interactions and potentially alters the underlying crystalline symmetry on which the topological properties depend7-9. However, conventional means of applying strain through heteroepitaxial lattice mismatch10 and dislocations11 are not extendable to controllable time-varying protocols, which are required in transistors. Integration into a functional device requires the ability to go beyond the robust, topologically protected properties of materials and to manipulate the topology at high speeds. Here we use crystallographic measurements by relativistic electron diffraction to demonstrate that terahertz light pulses can be used to induce terahertz-frequency interlayer shear strain with large strain amplitude in the Weyl semimetal WTe2, leading to a topologically distinct metastable phase. Separate nonlinear optical measurements indicate that this transition is associated with a symmetry change to a centrosymmetric, topologically trivial phase. We further show that such shear strain provides an ultrafast, energy-efficient way of inducing robust, well separated Weyl points or of annihilating all Weyl points of opposite chirality. This work demonstrates possibilities for ultrafast manipulation of the topological properties of solids and for the development of a topological switch operating at terahertz frequencies.
RESUMO
Manipulating the polarization of light at the nanoscale is key to the development of next-generation optoelectronic devices. This is typically done via waveplates using optically anisotropic crystals, with thicknesses on the order of the wavelength. Here, using a novel ultrafast electron-beam-based technique sensitive to transient near fields at THz frequencies, we observe a giant anisotropy in the linear optical response in the semimetal WTe2 and demonstrate that one can tune the THz polarization using a 50 nm thick film, acting as a broadband wave plate with thickness 3 orders of magnitude smaller than the wavelength. The observed circular deflections of the electron beam are consistent with simulations tracking the trajectory of the electron beam in the near field of the THz pulse. This finding offers a promising approach to enable atomically thin THz polarization control using anisotropic semimetals and defines new approaches for characterizing THz near-field optical response at far-subwavelength length scales.
RESUMO
For many chemical reactions, it remains notoriously difficult to predict and experimentally determine the rates and branching ratios between different reaction channels. This is particularly the case for reactions involving short-lived intermediates, whose observation requires ultrafast methods. The UV photochemistry of bromoform (CHBr3) is among the most intensely studied photoreactions. Yet, a detailed understanding of the chemical pathways leading to the production of atomic Br and molecular Br2 fragments has proven challenging. In particular, the role of isomerization and/or roaming and their competition with direct C-Br bond scission has been a matter of continued debate. Here, gas-phase ultrafast megaelectronvolt electron diffraction (MeV-UED) is used to directly study structural dynamics in bromoform after single 267 nm photon excitation with femtosecond temporal resolution. The results show unambiguously that isomerization contributes significantly to the early stages of the UV photochemistry of bromoform. In addition to direct C-Br bond breaking within <200 fs, formation of iso-CHBr3 (Br-CH-Br-Br) is observed on the same time scale and with an isomer lifetime of >1.1 ps. The branching ratio between direct dissociation and isomerization is determined to be 0.4 ± 0.2:0.6 ± 0.2, i.e., approximately 60% of molecules undergo isomerization within the first few hundred femtoseconds after UV excitation. The structure and time of formation of iso-CHBr3 compare favorably with the results of an ab initio molecular dynamics simulation. The lifetime and interatomic distances of the isomer are consistent with the involvement of a roaming reaction mechanism.
RESUMO
Identifying multiple rival reaction products and transient species formed during ultrafast photochemical reactions and determining their time-evolving relative populations are key steps toward understanding and predicting photochemical outcomes. Yet, most contemporary ultrafast studies struggle with clearly identifying and quantifying competing molecular structures/species among the emerging reaction products. Here, we show that mega-electronvolt ultrafast electron diffraction in combination with ab initio molecular dynamics calculations offer a powerful route to determining time-resolved populations of the various isomeric products formed after UV (266 nm) excitation of the five-membered heterocyclic molecule 2(5H)-thiophenone. This strategy provides experimental validation of the predicted high (â¼50%) yield of an episulfide isomer containing a strained three-membered ring within â¼1 ps of photoexcitation and highlights the rapidity of interconversion between the rival highly vibrationally excited photoproducts in their ground electronic state.
RESUMO
Strong coupling between light and mechanical strain forms the foundation for next-generation optical micro- and nano-electromechanical systems. Such optomechanical responses in two-dimensional materials present novel types of functionalities arising from the weak van der Waals bond between atomic layers. Here, by using structure-sensitive megaelectronvolt ultrafast electron diffraction, we report the experimental observation of optically driven ultrafast in-plane strain in the layered group IV monochalcogenide germanium sulfide (GeS). Surprisingly, the photoinduced structural deformation exhibits strain amplitudes of order 0.1% with a 10 ps fast response time and a significant in-plane anisotropy between zigzag and armchair crystallographic directions. Rather than arising due to heating, experimental and theoretical investigations suggest deformation potentials caused by electronic density redistribution and converse piezoelectric effects generated by photoinduced electric fields are the dominant contributors to the observed dynamic anisotropic strains. Our observations define new avenues for ultrafast optomechanical control and strain engineering within functional devices.
RESUMO
MXenes have the potential for efficient light-to-heat conversion in photothermal applications. To effectively utilize MXenes in such applications, it is important to understand the underlying nonequilibrium processes, including electron-phonon and phonon-phonon couplings. Here, we use transient electron and X-ray diffraction to investigate the heating and cooling of photoexcited MXenes at femtosecond to nanosecond time scales. Our results show extremely strong electron-phonon coupling in Ti3C2-based MXenes, resulting in lattice heating within a few hundred femtoseconds. We also systematically study heat dissipation in MXenes with varying film thicknesses, chemical surface terminations, flake sizes, and annealing conditions. We find that the thermal boundary conductance (TBC) governs the thermal relaxation in films thinner than the optical penetration depth. We achieve a 2-fold enhancement of the TBC, reaching 20 MW m-2 K-1, by controlling the flake size or chemical surface termination, which is promising for engineering heat dissipation in photothermal and thermoelectric applications of the MXenes.
RESUMO
Relaxor ferroelectrics have been intensely studied for decades based on their unique electromechanical responses which arise from local structural heterogeneity involving polar nanoregions or domains. Here, we report first studies of the ultrafast dynamics and reconfigurability of the polarization in freestanding films of the prototypical relaxor 0.68PbMg1/3Nb2/3O3-0.32PbTiO3 (PMN-0.32PT) by probing its atomic-scale response via femtosecond-resolution, electron-scattering approaches. By combining these structural measurements with dynamic phase-field simulations, we show that femtosecond light pulses drive a change in both the magnitude and direction of the polarization vector within polar nanodomains on few-picosecond time scales. This study defines new opportunities for dynamic reconfigurable control of the polarization in nanoscale relaxor ferroelectrics.
Assuntos
ElétronsRESUMO
Engineering novel states of matter with light is at the forefront of materials research. An intensely studied direction is to realize broken-symmetry phases that are "hidden" under equilibrium conditions but can be unleashed by an ultrashort laser pulse. Despite a plethora of experimental discoveries, the nature of these orders and how they transiently appear remain unclear. To this end, we investigate a nonequilibrium charge density wave (CDW) in rare-earth tritellurides, which is suppressed in equilibrium but emerges after photoexcitation. Using a pump-pump-probe protocol implemented in ultrafast electron diffraction, we demonstrate that the light-induced CDW consists solely of order parameter fluctuations, which bear striking similarities to critical fluctuations in equilibrium despite differences in the length scale. By calculating the dynamics of CDW fluctuations in a nonperturbative model, we further show that the strength of the light-induced order is governed by the amplitude of equilibrium fluctuations. These findings highlight photoinduced fluctuations as an important ingredient for the emergence of transient orders out of equilibrium. Our results further suggest that materials with strong fluctuations in equilibrium are promising platforms to host hidden orders after laser excitation.
RESUMO
We design and realize an arrival time diagnostic for ultrashort X-ray pulses achieving unprecedented high sensitivity in the soft X-ray regime via cross-correlation with a ≈1550 nm optical laser. An interferometric detection scheme is combined with a multi-layer sample design to greatly improve the sensitivity of the measurement. We achieve up to 275% of relative signal change when exposed to 1.6 mJ/cm2 of soft X-rays at 530 eV, more than a hundred-fold improvement in sensitivity as compared to previously reported techniques. The resolution of the arrival time measurement is estimated to around 2.8 fs (rms). The demonstrated X-ray arrival time monitor paves the way for sub-10 fs-level timing jitter at high repetition rate X-ray facilities.
RESUMO
Light-matter interaction at the nanoscale in magnetic materials is a topic of intense research in view of potential applications in next-generation high-density magnetic recording. Laser-assisted switching provides a pathway for overcoming the material constraints of high-anisotropy and high-packing density media, though much about the dynamics of the switching process remains unexplored. We use ultrafast small-angle X-ray scattering at an X-ray free-electron laser to probe the magnetic switching dynamics of FePt nanoparticles embedded in a carbon matrix following excitation by an optical femtosecond laser pulse. We observe that the combination of laser excitation and applied static magnetic field, 1 order of magnitude smaller than the coercive field, can overcome the magnetic anisotropy barrier between "up" and "down" magnetization, enabling magnetization switching. This magnetic switching is found to be inhomogeneous throughout the material with some individual FePt nanoparticles neither switching nor demagnetizing. The origin of this behavior is identified as the near-field modification of the incident laser radiation around FePt nanoparticles. The fraction of not-switching nanoparticles is influenced by the heat flow between FePt and a heat-sink layer.
RESUMO
Single femtosecond optical laser pulses, of sufficient intensity, are demonstrated to reverse magnetization in a process known as all-optical switching. Gold two-wire antennas are placed on the all-optical switching film TbFeCo. These structures are resonant with the optical field, and they create a field enhancement in the near-field which confines the area where optical switching can occur. The magnetic switching that occurs around and below the antenna is imaged using resonant X-ray holography and magnetic circular dichroism. The results not only show the feasibility of controllable switching with antenna assistance but also demonstrate the highly inhomogeneous nature of the switching process, which is attributed to the process depending on the material's heterogeneity.
RESUMO
Phonon scattering in metals is one of the most fundamental processes in materials science. However, understanding such processes has remained challenging and requires detailed information on interactions between phonons and electrons. We use an ultrafast electron diffuse scattering technique to resolve the nonequilibrium phonon dynamics in femtosecond-laser-excited tungsten in both time and momentum. We determine transient populations of phonon modes which show strong momentum dependence initiated by electron-phonon coupling. For phonons near Brillouin zone border, we observe a transient rise in their population on a timescale of approximately 1 picosecond driven by the strong electron-phonon coupling, followed by a slow decay on a timescale of approximately 8 picosecond governed by the weaker phonon-phonon relaxation process. We find that the exceptional harmonicity of tungsten is needed for isolating the two processes, resulting in long-lived nonequilibrium phonons in a pure metal. Our finding highlights that electron-phonon scattering can be the determinant factor in the phonon thermal transport of metals.
RESUMO
Photoinduced charge transfer in van der Waals heterostructures occurs on the 100 fs timescale despite weak interlayer coupling and momentum mismatch. However, little is understood about the microscopic mechanism behind this ultrafast process and the role of the lattice in mediating it. Here, using femtosecond electron diffraction, we directly visualize lattice dynamics in photoexcited heterostructures of WSe2/WS2 monolayers. Following the selective excitation of WSe2, we measure the concurrent heating of both WSe2 and WS2 on a picosecond timescale-an observation that is not explained by phonon transport across the interface. Using first-principles calculations, we identify a fast channel involving an electronic state hybridized across the heterostructure, enabling phonon-assisted interlayer transfer of photoexcited electrons. Phonons are emitted in both layers on the femtosecond timescale via this channel, consistent with the simultaneous lattice heating observed experimentally. Taken together, our work indicates strong electron-phonon coupling via layer-hybridized electronic states-a novel route to control energy transport across atomic junctions.
RESUMO
Magnetism in topological materials creates phases exhibiting quantized transport phenomena with potential technological applications. The emergence of such phases relies on strong interaction between localized spins and the topological bands, and the consequent formation of an exchange gap. However, this remains experimentally unquantified in intrinsic magnetic topological materials. Here, this interaction is quantified in MnBi2 Te4 , a topological insulator with intrinsic antiferromagnetism. This is achieved by optically exciting Bi-Te p states comprising the bulk topological bands and interrogating the consequent Mn 3d spin dynamics, using a multimodal ultrafast approach. Ultrafast electron scattering and magneto-optic measurements show that the p states demagnetize via electron-phonon scattering at picosecond timescales. Despite being energetically decoupled from the optical excitation, the Mn 3d spins, probed by resonant X-ray scattering, are observed to disorder concurrently with the p spins. Together with atomistic simulations, this reveals that the exchange coupling between localized spins and the topological bands is at least 100 times larger than the superexchange interaction, implying an optimal exchange gap of at least 25 meV in the surface states. By quantifying this exchange coupling, this study validates the materials-by-design strategy of utilizing localized magnetic order to manipulate topological phases, spanning static to ultrafast timescales.
RESUMO
The emergence of magnetism in quantum materials creates a platform to realize spin-based applications in spintronics, magnetic memory, and quantum information science. A key to unlocking new functionalities in these materials is the discovery of tunable coupling between spins and other microscopic degrees of freedom. We present evidence for interlayer magnetophononic coupling in the layered magnetic topological insulator MnBi2Te4. Employing magneto-Raman spectroscopy, we observe anomalies in phonon scattering intensities across magnetic field-driven phase transitions, despite the absence of discernible static structural changes. This behavior is a consequence of a magnetophononic wave-mixing process that allows for the excitation of zone-boundary phonons that are otherwise 'forbidden' by momentum conservation. Our microscopic model based on density functional theory calculations reveals that this phenomenon can be attributed to phonons modulating the interlayer exchange coupling. Moreover, signatures of magnetophononic coupling are also observed in the time domain through the ultrafast excitation and detection of coherent phonons across magnetic transitions. In light of the intimate connection between magnetism and topology in MnBi2Te4, the magnetophononic coupling represents an important step towards coherent on-demand manipulation of magnetic topological phases.
RESUMO
Magnetic nanoparticles such as FePt in the L10 phase are the bedrock of our current data storage technology. As the grains become smaller to keep up with technological demands, the superparamagnetic limit calls for materials with higher magnetocrystalline anisotropy. This, in turn, reduces the magnetic exchange length to just a few nanometers, enabling magnetic structures to be induced within the nanoparticles. Here, we describe the existence of spin-wave solitons, dynamic localized bound states of spin-wave excitations, in FePt nanoparticles. We show with time-resolved x-ray diffraction and micromagnetic modeling that spin-wave solitons of sub-10 nm sizes form out of the demagnetized state following femtosecond laser excitation. The measured soliton spin precession frequency of 0.1 THz positions this system as a platform to develop novel miniature devices.
RESUMO
Nonradiative processes limit optoelectronic functionality of nanocrystals and curb their device performance. Nevertheless, the dynamic structural origins of nonradiative relaxations in such materials are not understood. Here, femtosecond electron diffraction measurements corroborated by atomistic simulations uncover transient lattice deformations accompanying radiationless electronic processes in colloidal semiconductor nanocrystals. Investigation of the excitation energy dependence in a core/shell system shows that hot carriers created by a photon energy considerably larger than the bandgap induce structural distortions at nanocrystal surfaces on few picosecond timescales associated with the localization of trapped holes. On the other hand, carriers created by a photon energy close to the bandgap of the core in the same system result in transient lattice heating that occurs on a much longer 200 picosecond timescale, dominated by an Auger heating mechanism. Elucidation of the structural deformations associated with the surface trapping of hot holes provides atomic-scale insights into the mechanisms deteriorating optoelectronic performance and a pathway towards minimizing these losses in nanocrystal devices.
RESUMO
The inspection of Friedel's law in ultrafast electron diffraction (UED) is important to gain a comprehensive understanding of material atomic structure and its dynamic response. Here, monoclinic gallium telluride (GaTe), as a low-symmetry, layered crystal in contrast to many other 2D materials, is investigated by mega-electronvolt UED. Strong out-of-phase oscillations of Bragg peak intensities are observed for Friedel pairs, which does not obey Friedel's law. As evidenced by the preserved mirror symmetry and supported by both kinematic and dynamic scattering simulations, the intensity oscillations are provoked by the lowest-order longitudinal acoustic breathing phonon. Our results provide a generalized understanding of Friedel's law in UED and demonstrate that by designed misalignment of surface normal and primitive lattice vectors, coherent lattice wobbling and effective shear strain can be generated in crystal films by laser pulse excitation, which is otherwise hard to achieve and can be further utilized to dynamically tune and switch material properties.