Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Chemphyschem ; 22(15): 1546, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34352157

RESUMO

The front cover artwork was provided by Gabriel Moya, a PhD student in the Cordes lab (LMU Biocenter Munich, Germany). The cover image shows an artistic impression of the chemical structures of two fluorophores investigated in the paper. Read the full text of the Article at 10.1002/cphc.202000935.

2.
Chemphyschem ; 22(15): 1566-1583, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34185946

RESUMO

The use of fluorescence techniques has an enormous impact on various research fields including imaging, biochemical assays, DNA-sequencing and medical technologies. This has been facilitated by the development of numerous commercial dyes with optimized photophysical and chemical properties. Often, however, information about the chemical structures of dyes and the attached linkers used for bioconjugation remain a well-kept secret. This can lead to problems for research applications where knowledge of the dye structure is necessary to predict or understand (unwanted) dye-target interactions, or to establish structural models of the dye-target complex. Using a combination of optical spectroscopy, mass spectrometry, NMR spectroscopy and molecular dynamics simulations, we here investigate the molecular structures and spectroscopic properties of dyes from the Alexa Fluor (Alexa Fluor 555 and 647) and AF series (AF555, AF647, AFD647). Based on available data and published structures of the AF and Cy dyes, we propose a structure for Alexa Fluor 555 and refine that of AF555. We also resolve conflicting reports on the linker composition of Alexa Fluor 647 maleimide. We also conducted a comprehensive comparison between Alexa Fluor and AF dyes by continuous-wave absorption and emission spectroscopy, quantum yield determination, fluorescence lifetime and anisotropy spectroscopy of free and protein-attached dyes. All these data support the idea that Alexa Fluor and AF dyes have a cyanine core and are a derivative of Cy3 and Cy5. In addition, we compared Alexa Fluor 555 and Alexa Fluor 647 to their structural homologs AF555 and AF(D)647 in single-molecule FRET applications. Both pairs showed excellent performance in solution-based smFRET experiments using alternating laser excitation. Minor differences in apparent dye-protein interactions were investigated by molecular dynamics simulations. Our findings clearly demonstrate that the AF-fluorophores are an attractive alternative to Alexa- and Cy-dyes in smFRET studies or other fluorescence applications.


Assuntos
Carbocianinas/química , Corantes Fluorescentes/química , Proteínas/química , Rodaminas/química , Ácidos Sulfônicos/química , Cisteína/química , Polarização de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Simulação de Dinâmica Molecular , Estrutura Molecular , Proteínas/análise , Imagem Individual de Molécula
3.
J Comput Chem ; 38(10): 714-720, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28120339

RESUMO

In this study, we propose newly derived parameters for phosphate ions in the context of the GROMOS force field parameter sets. The non-bonded parameters used up to now lead to a hydration free energy, which renders the dihydrogen phosphate ion too hydrophobic when compared to experimentally derived values, making a reparametrization of the phosphate moiety necessary. Phosphate species are of great importance in biomolecular simulations not only because of their crucial role in the backbone of nucleic acids but also as they represent one of the most important types of post-translational modifications to protein side-chains and are an integral part in many lipids. Our re-parametrization of the free dihydrogen phosphate (H 2PO 4-) and three derivatives (methyl phosphate, dimethyl phosphate, and phenyl phosphate) leads, in conjunction with the previously updated charged side-chains in the GROMOS parameter set 54A8, to new nucleic acid backbone parameters and a 54A8 version of the widely used GROMOS protein post-translational modification parameter set. © 2017 Wiley Periodicals, Inc.

4.
J Comput Chem ; 37(18): 1711-24, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27185199

RESUMO

The evaluation of water binding free energies around solute molecules is important for the thermodynamic characterization of hydration or association processes. Here, a rapid approximate method to estimate water binding free energies around (bio)macromolecules from a single molecular dynamics simulation is presented. The basic idea is that endpoint free-energy calculation methods are applied and the endpoint quantities are monitored on a three-dimensional grid around the solute. Thus, a gridded map of water binding free energies around the solute is obtained, that is, from a single short simulation, a map of favorable and unfavorable water binding sites can be constructed. Among the employed free-energy calculation methods, approaches involving endpoint information pertaining to actual thermodynamic integration calculations or endpoint information as exploited in the linear interaction energy method were examined. The accuracy of the approximate approaches was evaluated on the hydration of a cage-like molecule representing either a nonpolar, polar, or charged water binding site and on α- and ß-cyclodextrin molecules. Among the tested approaches, the linear interaction energy method is considered the most viable approach. Applying the linear interaction energy method on the grid around the solute, a semi-quantitative thermodynamic characterization of hydration around the whole solute is obtained. Disadvantages are the approximate nature of the method and a limited flexibility of the solute. © 2016 Wiley Periodicals, Inc.


Assuntos
Substâncias Macromoleculares/química , Modelos Químicos , Termodinâmica , Água/química , Sítios de Ligação , Entropia , Simulação de Dinâmica Molecular , Soluções , Solventes/química
5.
Theor Chem Acc ; 134(2): 2, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26097404

RESUMO

Despite considerable advances in computing power, atomistic simulations under nonperiodic boundary conditions, with Coulombic electrostatic interactions and in systems large enough to reduce finite-size associated errors in thermodynamic quantities to within the thermal energy, are still not affordable. As a result, periodic boundary conditions, systems of microscopic size and effective electrostatic interaction functions are frequently resorted to. Ensuing artifacts in thermodynamic quantities are nowadays routinely corrected a posteriori, but the underlying configurational sampling still descends from spurious forces. The present study addresses this problem through the introduction of on-the-fly corrections to the physical forces during an atomistic molecular dynamics simulation. Two different approaches are suggested, where the force corrections are derived from special potential energy terms. In the first approach, the solvent-generated electrostatic potential sampled at a given atom site is restrained to a target value involving corrections for electrostatic artifacts. In the second approach, the long-range regime of the solvent polarization around a given atom site is restrained to the Born polarization, i.e., the solvent polarization corresponding to the ideal situation of a macroscopic system under nonperiodic boundary conditions and governed by Coulombic electrostatic interactions. The restraints are applied to the explicit-water simulation of a hydrated sodium ion, and the effect of the restraints on the structural and energetic properties of the solvent is illustrated. Furthermore, by means of the calculation of the charging free energy of a hydrated sodium ion, it is shown how the electrostatic potential restraint translates into the on-the-fly consideration of the corresponding free-energy correction terms. It is discussed how the restraints can be generalized to situations involving several solute particles. Although the present study considers a very simple system only, it is an important step toward the on-the-fly elimination of finite-size and approximate-electrostatic artifacts during atomistic molecular dynamics simulations.

6.
Biochemistry ; 53(29): 4869-79, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-24988286

RESUMO

Chlorite dismutases are prokaryotic heme b oxidoreductases that convert chlorite to chloride and dioxygen. It has been postulated that during turnover hypochlorite is formed transiently, which might be responsible for the observed irreversible inactivation of these iron proteins. The only charged distal residue in the heme cavity is a conserved and mobile arginine, but its role in catalysis and inactivation is not fully understood. In the present study, the pentameric chlorite dismutase (Cld) from the bacterium Candidatus Nitrospira defluvii was probed for binding of the low spin ligand cyanide, the substrate chlorite, and the intermediate hypochlorite. Simulations were performed with the enzyme in the ferrous, ferric, and compound I state. Additionally, the variant R173A was studied. We report the parametrization for the GROMOS force field of the anions ClO(-), ClO2(-), ClO3(-), and ClO4(-) and describe spontaneous binding, unbinding, and rebinding events of chlorite and hypochlorite, as well as the dynamics of the conformations of Arg173 during simulations. The findings suggest that (i) chlorite binding to ferric NdCld occurs spontaneously and (ii) that Arg173 is important for recognition and to impair hypochlorite leakage from the reaction sphere. The simulation data is discussed in comparison with experimental data on catalysis and inhibition of chlorite dismutase.


Assuntos
Proteínas de Bactérias/química , Ferro/química , Simulação de Dinâmica Molecular , Oxirredutases/química , Ânions , Proteínas de Bactérias/genética , Cátions , Cloretos/química , Cianetos/química , Compostos Férricos/química , Compostos Ferrosos/química , Ácido Hipocloroso/química , Mutação , Oxirredutases/genética , Ligação Proteica , Conformação Proteica , Multimerização Proteica
7.
J Comput Chem ; 35(32): 2319-32, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25338770

RESUMO

Förster resonance energy transfer (FRET) measurements are widely used to investigate (bio)molecular interactions or/and association. FRET efficiencies, the primary data obtained from this method, give, in combination with the common assumption of isotropic chromophore orientation, detailed insight into the lengthscale of molecular phenomena. This study illustrates the application of a FRET efficiency restraint during classical atomistic molecular dynamics simulations of a mutant mastoparan X peptide in either water or 7 M aqueous urea. The restraint forces acting on the donor and acceptor chromophores ensure that the sampled peptide configurational ensemble satisfies the experimental primary data by modifying interchromophore separation and chromophore transition dipole moment orientations. By means of a conformational cluster analysis, it is seen that indeed different configurational ensembles may be sampled without and with application of the restraint. In particular, while the FRET efficiency and interchromophore distances monitored in an unrestrained simulation may differ from the experimentally-determined values, they can be brought in agreement with experimental data through usage of the FRET efficiency restraining potential. Furthermore, the present results suggest that the assumption of isotropic chromophore orientation is not always justified. The FRET efficiency restraint allows the generation of configurational ensembles that may not be accessible with unrestrained simulations, and thereby supports a meaningful interpretation of experimental FRET results in terms of the underlying molecular degrees of freedom. Thus, it offers an additional tool to connect the realms of computer and wet-lab experimentation.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Simulação de Dinâmica Molecular
8.
J Comput Chem ; 35(3): 227-43, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24249099

RESUMO

The calculation of binding free energies of charged species to a target molecule is a frequently encountered problem in molecular dynamics studies of (bio-)chemical thermodynamics. Many important endogenous receptor-binding molecules, enzyme substrates, or drug molecules have a nonzero net charge. Absolute binding free energies, as well as binding free energies relative to another molecule with a different net charge will be affected by artifacts due to the used effective electrostatic interaction function and associated parameters (e.g., size of the computational box). In the present study, charging contributions to binding free energies of small oligoatomic ions to a series of model host cavities functionalized with different chemical groups are calculated with classical atomistic molecular dynamics simulation. Electrostatic interactions are treated using a lattice-summation scheme or a cutoff-truncation scheme with Barker-Watts reaction-field correction, and the simulations are conducted in boxes of different edge lengths. It is illustrated that the charging free energies of the guest molecules in water and in the host strongly depend on the applied methodology and that neglect of correction terms for the artifacts introduced by the finite size of the simulated system and the use of an effective electrostatic interaction function considerably impairs the thermodynamic interpretation of guest-host interactions. Application of correction terms for the various artifacts yields consistent results for the charging contribution to binding free energies and is thus a prerequisite for the valid interpretation or prediction of experimental data via molecular dynamics simulation. Analysis and correction of electrostatic artifacts according to the scheme proposed in the present study should therefore be considered an integral part of careful free-energy calculation studies if changes in the net charge are involved.


Assuntos
Acetatos/química , Artefatos , Fulerenos/química , Metilaminas/química , Simulação de Dinâmica Molecular , Ligação de Hidrogênio , Íons , Cinética , Ligantes , Soluções , Eletricidade Estática , Termodinâmica , Água/química
9.
J Chem Theory Comput ; 20(6): 2643-2654, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38465868

RESUMO

It is well-known that proline (Pro) cis-trans isomerization plays a decisive role in the folding and stabilization of proteins. The conformational coupling between isomerization states of different Pro residues in proteins during conformational adaptation processes is not well understood. In the present work, we investigate the coupled cis-trans isomerization of three Pro residues using bradykinin (BK), a partially unstructured nonapeptide hormone, as a model system. We use a recently developed enhanced-sampling molecular dynamics method (ω-bias potential replica exchange molecular dynamics; ωBP-REMD) that allows us to exhaustively sample all combinations of Pro isomer states and obtain converged probability densities of all eight state combinations within 885 ns ωBP-REMD simulations. In agreement with experiment, the all-trans state is seen to be the preferred isomer of zwitterionic aqueous BK. In about a third of its structures, this state presents the characteristic C-terminal ß-turn conformation; however, other isomer combinations also contribute significantly to the structural ensemble. Unbiased probabilities can be projected onto the peptide bond dihedral angles of the three Pro residues. This unveils the interdependence of the individual Pro isomerization states, i.e., a possible coupling of the different Pro isomers. The cis/trans equilibrium of a Pro residue can change by up to 2.5 kcal·mol-1, depending on the isomerization state of other Pro residues. For example, for Pro7, the simulations indicate that its cis state becomes favored compared to its trans state when Pro2 is switched from the trans state to the cis state. Our findings demonstrate the efficiency of the ωBP-REMD methodology and suggest that the coupling of Pro isomerization states may play an even more decisive role in larger folded proteins subject to more conformational restraints.


Assuntos
Bradicinina , Prolina , Conformação Proteica , Prolina/química , Termodinâmica , Proteínas
10.
Structure ; 31(11): 1473-1484.e6, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37657438

RESUMO

Proline cis/trans isomerization plays an important role in many biological processes but occurs on time scales not accessible to brute-force molecular dynamics (MD) simulations. We have designed a new Hamiltonian replica exchange scheme, ω-bias potential replica exchange molecular dynamics (ωBP-REMD), to efficiently and accurately calculate proline cis/trans isomerization free energies. ωBP-REMD is applied to various proline-containing tripeptides and a biologically important proline residue in the N2-domain of the gene-3-protein of phage fd in the wildtype and mutant variants of the protein. Excellent cis/trans transition rates are obtained. Reweighting of the sampled probability distribution along the peptide bond dihedral angle allows construction of the corresponding free-energy profile and calculation of the cis/trans isomerization free energy with high statistical precision. Very good agreement with experimental data is obtained. ωBP-REMD outperforms standard umbrella sampling in terms of convergence and agreement with experiment and strongly reduces perturbation of the local structure near the proline residue.


Assuntos
Simulação de Dinâmica Molecular , Prolina , Prolina/química , Proteínas , Peptídeos
11.
Biochemistry ; 51(43): 8636-53, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23009386

RESUMO

Cathepsins are mammalian papain-like cysteine proteases that play an important role in numerous physiological and pathological processes. In the present study, various molecular dynamics (MD) simulations of pro- and mature human cathepsins L and O were performed. This study is the first to report MD simulations to complement the initial model structure of (pro-)cathepsin O through conformational sampling, thus offering insight into the maturation of procathepsin O, which to date has not been described experimentally. The overall fold of (pro-)cathepsin O appears very similar to that of (pro-)cathepsin L. The propeptide binding loop (PBL)-propeptide interface of both procathepsins is found to form a stable two-stranded ß-sheet. Additional stabilization of the PBL-propeptide interface is provided by hydrophobic side chain contacts in procathepsin L, whereas this seems to be due to charge-dipole interactions in procathepsin O. Introduction of two mutations (L147P and G148P) into procathepsin O entails a significant loss of hydrogen bonding, disabling formation of the interfacial ß-sheet. Simulations at different protonation states suggest that procathepsin L is more sensitive to a change in pH than procathepsin O. Potential differences between the maturation of procathepsin O and procathepsin L inferred from the MD simulations might be caused by (i) stronger PBL-propeptide interactions in procathepsin O due to salt-bridge formation across the interface, (ii) more limited entropic gain of the propeptide of procathepsin O upon release into the bulk solvent due to diverse conformational states sampled in the bound state, (iii) more pronounced entropic loss of the PBL in procathepsin O upon substrate binding caused by diverse conformational states sampled in the free, mature enzyme, and (iv) lower sensitivity of procathepsin O to pH change caused by the presence of fewer carboxylate groups at the PBL-propeptide interface.


Assuntos
Catepsina L/metabolismo , Catepsinas/metabolismo , Precursores Enzimáticos/metabolismo , Sequência de Aminoácidos , Catepsina L/química , Catepsinas/química , Precursores Enzimáticos/química , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , Mapeamento de Interação de Proteínas , Alinhamento de Sequência
12.
Arch Biochem Biophys ; 522(2): 100-6, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22510364

RESUMO

Amyloid fibrils are commonly observed to adopt multiple distinct morphologies, which eventually can have significantly different neurotoxicities, as e.g. demonstrated in case of the Alzheimer peptide. The architecture of amyloid deposits is apparently also determined by the stereochemistry of amino acids. Post-translational changes of the chirality of certain residues may thus be a factor in controlling the formation of functional or disease-related amyloids. Anionic dermaseptin (aDrs), an unusual peptide from the skin secretions of the frog Pachymedusa dacnicolor, assembles to amyloid-like fibrils in a pH-dependent manner, which could play a functional role in defense. aDrs can be enzymatically converted into the diastereomer [d-Leu2]-aDrs by an l/d-isomerase. EM and AFM on fibrils formed by these isomers have shown that their predominant morphology is controlled by the stereochemistry of residue 2, whereas kinetic and thermodynamic parameters of aggregation are barely affected. When fibrils were grown from preformed seeds, backbone stereochemistry rather than templating-effects apparently dominated the superstructural organization of the isomers. Interestingly, MD indicated small differences in the conformational propensities between the isomers. Our results demonstrate how d-amino acid substitutions could take active part in the formation of functional or disease-related amyloid. Moreover, these findings contribute to the development of amyloid-based nanomaterials.


Assuntos
Proteínas de Anfíbios/fisiologia , Amiloide/fisiologia , Peptídeos Catiônicos Antimicrobianos/fisiologia , Modelos Moleculares , Proteínas de Anfíbios/química , Amiloide/química , Peptídeos Catiônicos Antimicrobianos/química , Cinética , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo , Termodinâmica
13.
J Chem Theory Comput ; 18(6): 3873-3893, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35653503

RESUMO

We present an approach combining alchemical modifications and physical-pathway methods to calculate absolute binding free energies. The employed physical-pathway method is either a stratified umbrella sampling to calculate a potential of mean force or nonequilibrium pulling. We devised two basic approaches: the simultaneous approach (S-approach), where, along the physical unbinding pathway, an alchemical transformation of ligand-protein interactions is installed and deinstalled, and the prior-plus-simultaneous approach (PPS-approach), where, prior to the physical-pathway simulation, an alchemical transformation of ligand-protein interactions is installed in the binding site and deinstalled during the physical-pathway simulation. Using a mutant of T4 lysozyme with a benzene ligand as an example, we show that installation and deinstallation of soft-core interactions concurrent with physical ligand unbinding (S-approach) allow successful potential of mean force calculations and nonequilibrium pulling simulations despite the problems posed by the occluded nature of the lysozyme binding pocket. Good agreement between the potential of the mean-force-based S-approach and double decoupling simulations as well as a remarkable efficiency and accuracy of the nonequilibrium-pulling-based S-approach is found. The latter turned out to be more compute-efficient than the potential of mean force calculation by approximately 70%. Furthermore, we illustrate the merits of reducing ligand-protein interactions prior to potential of mean force calculations using the murine double minute homologue protein MDM2 with a p53-derived peptide ligand (PPS-approach). Here, the problem of breaking strong interactions in the binding pocket is transferred to a prior alchemical transformation that reduces the free-energy barrier between the bound and unbound state in the potential of mean force. Besides, disentangling physical ligand displacement from the deinstallation of ligand-protein interactions was seen to allow a more uniform sampling of distance histograms in the umbrella sampling. In the future, physical ligand unbinding combined with simultaneous alchemical modifications may prove useful in the calculation of protein-protein binding free energies, where sampling problems posed by multiple, possibly sticky interactions and potential steric clashes can thus be reduced.


Assuntos
Simulação de Dinâmica Molecular , Muramidase , Animais , Ligantes , Camundongos , Muramidase/química , Ligação Proteica , Termodinâmica
14.
Methods Mol Biol ; 2385: 255-292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34888724

RESUMO

A quantitative thermodynamic understanding of the noncovalent association of (bio)molecules is of central importance in molecular life sciences. An important quantity characterizing (bio)molecular association is the binding affinity or absolute binding free energy. In recent years, the computational prediction of absolute binding free energies has evolved considerably in terms of accuracy, computational speed, and user-friendliness. In this chapter, we first give an overview of how absolute free energies are defined and how they can be determined with computational means. We proceed with an outline of the theoretical basis of the two most reliable methods, potential of mean force, and double decoupling calculations. In particular, we describe how the sampling problem can be alleviated by application of restraints. Finally, we provide step-by-step instructions of how to set up corresponding molecular simulations with a commonly employed molecular dynamics simulation engine.


Assuntos
Entropia , Simulação de Dinâmica Molecular , Ligantes , Ligação Proteica
15.
J Chem Phys ; 134(14): 144103, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21495738

RESUMO

The raw single-ion solvation free energies computed from atomistic (explicit-solvent) simulations are extremely sensitive to the boundary conditions (finite or periodic system, system or box size) and treatment of electrostatic interactions (Coulombic, lattice-sum, or cutoff-based) used during these simulations. However, as shown by Kastenholz and Hünenberger [J. Chem. Phys. 124, 224501 (2006)], correction terms can be derived for the effects of: (A) an incorrect solvent polarization around the ion and an incomplete or/and inexact interaction of the ion with the polarized solvent due to the use of an approximate (not strictly Coulombic) electrostatic scheme; (B) the finite-size or artificial periodicity of the simulated system; (C) an improper summation scheme to evaluate the potential at the ion site, and the possible presence of a polarized air-liquid interface or of a constraint of vanishing average electrostatic potential in the simulated system; and (D) an inaccurate dielectric permittivity of the employed solvent model. Comparison with standard experimental data also requires the inclusion of appropriate cavity-formation and standard-state correction terms. In the present study, this correction scheme is extended by: (i) providing simple approximate analytical expressions (empirically-fitted) for the correction terms that were evaluated numerically in the above scheme (continuum-electrostatics calculations); (ii) providing correction terms for derivative thermodynamic single-ion solvation properties (and corresponding partial molar variables in solution), namely, the enthalpy, entropy, isobaric heat capacity, volume, isothermal compressibility, and isobaric expansivity (including appropriate standard-state correction terms). The ability of the correction scheme to produce methodology-independent single-ion solvation free energies based on atomistic simulations is tested in the case of Na(+) hydration, and the nature and magnitude of the correction terms for derivative thermodynamic properties is assessed numerically.


Assuntos
Físico-Química/métodos , Simulação por Computador , Íons/química , Algoritmos , Modelos Moleculares , Soluções/química , Eletricidade Estática , Temperatura , Termodinâmica , Água/química
16.
J Chem Phys ; 134(14): 144104, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21495739

RESUMO

The raw single-ion solvation free energies computed from atomistic (explicit-solvent) simulations are extremely sensitive to the boundary conditions and treatment of electrostatic interactions used during these simulations. However, as shown recently [M. A. Kastenholz and P. H. Hünenberger, J. Chem. Phys. 124, 224501 (2006); M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144103 (2010)], the application of appropriate correction terms permits to obtain methodology-independent results. The corrected values are then exclusively characteristic of the underlying molecular model including in particular the ion-solvent van der Waals interaction parameters, determining the effective ion size and the magnitude of its dispersion interactions. In the present study, the comparison of calculated (corrected) hydration free energies with experimental data (along with the consideration of ionic polarizabilities) is used to calibrate new sets of ion-solvent van der Waals (Lennard-Jones) interaction parameters for the alkali (Li(+), Na(+), K(+), Rb(+), Cs(+)) and halide (F(-), Cl(-), Br(-), I(-)) ions along with either the SPC or the SPC/E water models. The experimental dataset is defined by conventional single-ion hydration free energies [Tissandier et al., J. Phys. Chem. A 102, 7787 (1998); Fawcett, J. Phys. Chem. B 103, 11181] along with three plausible choices for the (experimentally elusive) value of the absolute (intrinsic) hydration free energy of the proton, namely, ΔG(hyd)(⊖)[H(+)] = -1100, -1075 or -1050 kJ mol(-1), resulting in three sets L, M, and H for the SPC water model and three sets L(E), M(E), and H(E) for the SPC/E water model (alternative sets can easily be interpolated to intermediate ΔG(hyd)(⊖)[H(+)] values). The residual sensitivity of the calculated (corrected) hydration free energies on the volume-pressure boundary conditions and on the effective ionic radius entering into the calculation of the correction terms is also evaluated and found to be very limited. Ultimately, it is expected that comparison with other experimental ionic properties (e.g., derivative single-ion solvation properties, as well as data concerning ionic crystals, melts, solutions at finite concentrations, or nonaqueous solutions) will permit to validate one specific set and thus, the associated ΔG(hyd)(⊖)[H(+)] value (atomistic consistency assumption). Preliminary results (first-peak positions in the ion-water radial distribution functions, partial molar volumes of ionic salts in water, and structural properties of ionic crystals) support a value of ΔG(hyd)(⊖)[H(+)] close to -1100 kJ·mol(-1).

17.
J Phys Chem B ; 113(10): 3112-28, 2009 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-19228001

RESUMO

Eight 100-ns molecular dynamics simulations of a beta-heptapeptide in methanol at 340 K (within cubic periodic computational boxes of about 6-nm edge) are reported and compared. These simulations were performed with three different charge-state combinations at the peptide termini, one of them with or without a neutralizing chloride counterion, and using either the lattice-sum (LS) or reaction-field (RF) scheme to handle electrostatic interactions. The choice of the electrostatic scheme has essentially no influence on the folding-unfolding equilibrium when the peptide termini are uncharged and only a small influence when the peptide is positively charged at its N-terminus (with or without inclusion of a neutralizing chloride counterion). However, when the peptide is zwitterionic, the LS scheme leads to preferential sampling of the high-dipole folded helical state, whereas the RF scheme leads to preferential sampling of a low-dipole unfolded salt-bridged state. A continuum electrostatics analysis based on the sampled configurations (zwitterionic case) suggests that the LS scheme stabilizes the helical state through artificial periodicity, but that the magnitude of this perturbation is essentially negligible (compared to the thermal energy) for the large box size and relatively polar solvent considered. The results thus provide clear evidence (continuum electrostatics analysis) for the absence of LS artifacts and some indications (still not definitive because of the limited sampling of the folding-unfolding transition) for the presence of RF artifacts in this specific system.


Assuntos
Metanol/química , Peptídeos/química , Eletricidade Estática , Biologia Computacional/métodos , Simulação por Computador , Íons , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Modelos Estatísticos , Conformação Molecular , Dobramento de Proteína , Estrutura Terciária de Proteína , Solventes , Termodinâmica
18.
J Mol Biol ; 431(2): 223-243, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30339869

RESUMO

The voltage-dependent anion channel (VDAC) resides in the outer mitochondrial membrane and can adopt a closed or open configuration, most likely depending on whether the N-terminal segment (NTS) occupies the pore or protrudes into the cytoplasm. In this study, we calculate the free energy of releasing the NTS from the pore using molecular dynamics simulation. This is complicated by the flexible nature of the NTS, in particular its disordered structure in aqueous solution compared to the pore lumen. We carried out potential of mean force calculations using enhanced sampling or conformational restraints to address the conformational sampling problem. For the binding to the VDAC pore, two systems were considered, featuring either the native VDAC system or a modified system where the NTS is detached from the pore, that is, noncovalently bound in the pore lumen. The calculated free energies required to translocate the NTS from the pore into the solvent moiety are 83.8 or 74.3 kJ mol-1, respectively. The dissociation pathway in VDAC presents two in-pore minima, separated by a low free energy barrier and a membrane-bound intermediate state. Since we observe small changes in pore shape along the NTS dissociation pathway, we suggest that rigidification of the VDAC pore might impair NTS dissociation. The stability of the membrane-bound state of the VDAC NTS is confirmed by independent molecular dynamics simulations showing spontaneous membrane binding of a NTS-derived peptide as well as nuclear magnetic resonance experiments where chemical shift perturbations of the NTS-derived peptide evidence binding to phospholipid nanodiscs.


Assuntos
Membranas/metabolismo , Membranas Mitocondriais/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Escherichia coli/metabolismo , Conformação Molecular , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Fosfolipídeos/metabolismo
19.
Membranes (Basel) ; 7(1)2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28125062

RESUMO

The effect of ion binding on the structural, mechanical, dynamic and electrostatic properties of a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer in a 0.5 M aqueous NaCl solution is investigated using classical atomistic molecular dynamics simulation with different force-field descriptions for ion-ion and ion-lipid interactions. Most importantly, the repulsive Lennard-Jones parameters for the latter were modified, such that approximately similar binding of cations and anions to the lipid membrane is achieved. This was done to qualitatively improve the apparent ion-lipid binding constants obtained from simulations with the original force field (Berger lipids and GROMOS87 ions in combination with the SPC water model) in comparison to experimental data. Furthermore, various parameters characterizing membrane structure, elasticity, order and dynamics are analyzed. It is found that ion binding as observed in simulations involving the modified in comparison to the original force-field description leads to: (i) a smaller salt-induced change in the area per lipid, which is in closer agreement with the experiment; (ii) a decrease in the area compressibility and bilayer thickness to values comparable to a bilayer in pure water; (iii) lipid deuterium order parameters and lipid diffusion coefficients on nanosecond timescales that are very similar to the values for a membrane in pure water. In general, salt effects on the structural properties of a POPC bilayer in an aqueous sodium-chloride solution appear to be reproduced reasonably well by the new force-field description. An analysis of membrane-membrane disjoining pressure suggests that the smaller salt-induced change in area per lipid induced by the new force-field description is not due to the alteration of membrane-associated net charge, but must rather be understood as a consequence of ion-specific effects on the arrangement of lipid molecules.

20.
J Inorg Biochem ; 100(7): 1199-207, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16530269

RESUMO

The n-octanol/water partition coefficient, logP(o/w), for a set of 24 Pt(II)-complexes was estimated by means of reversed-phase high performance liquid chromatography (RP-HPLC) technique using a C18 (ODS, octadecyl silane) column as a stationary phase and water/methanol mixtures as mobile phases. Based on the known logP(o/w) of several Pt(II)-complexes, we set a method to correlate the partition coefficient of this kind of complexes with the corresponding retention parameters. The best result was obtained from extrapolation to 0% of the organic modifier (MeOH) of the aqueous eluant. A quantitative structure-property relationship (QSPR) was constructed using molecular descriptors derived from density functional theory (DFT) calculations, which was found to correlate and predict these values with good accuracy. The use of DFT calculations is required because group-additive methods fail due to lack of values for appropriate fragments for many Pt(II)-complexes.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Compostos de Platina/análise , Ressonância de Plasmônio de Superfície/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA