Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39062977

RESUMO

The ability of thermoresponsive polymers to respond to temperature with a reversible conformational change makes them promising 'smart' materials for solutions in medical and biotechnological applications. In this work, two such polymers and structural isomers were studied: poly(N-isopropyl acrylamide) (PNiPAm) and poly(2-isopropyl-2-oxazoline) (PiPOx). We compare the critical solution temperatures (CST) of these polymers in D2O and H2O in the presence of Hofmeister series salts, as results obtained under these different solvent conditions are often compared. D2O has a higher dipole moment and electronegativity than H2O, which could significantly alter the CST transition. We used two complementary methods to measure the CST, dynamic light scattering (DLS) and differential scanning calorimetry (DSC) and found that the CST decreased significantly in D2O compared to H2O. In the presence of highly concentrated kosmotropes, the CST of both polymers decreased in both solvents. The influence of the kosmotropic anions was smaller than the water isotope effect at low ionic strengths but considerably higher at physiological ionic strengths. However, the Hofmeister anion effect was quantitatively different in H2O than in D2O, with the largest relative differences observed for Cl-, where the CSTs in D2O decreased more than in H2O measured by DLS but less by DSC. PiPOx was more sensitive than PNiPAm to the presence of chaotropes. It exhibited much higher transition enthalpies and multistep transitions, especially in aqueous solutions. Our results highlight that measurements of thermoresponsive polymer properties in D2O cannot be compared directly or quantitatively to application conditions or even measurements performed in H2O.


Assuntos
Polímeros , Solventes , Temperatura , Solventes/química , Polímeros/química , Varredura Diferencial de Calorimetria , Resinas Acrílicas/química , Óxido de Deutério/química , Água/química , Soluções
2.
Rapid Commun Mass Spectrom ; 36(1): e9212, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34661948

RESUMO

RATIONALE: Surface functionalization is considered to be the foundation for developing nanomaterial applications in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analyses. However, the surface properties of nanostructures can influence their interaction with the analyte and consequently the mass data. In the present study, functionalized nanoparticles (NPs) were used for MALDI-MS and laser desorption/ionization mass spectrometry (LDI-MS) experiments in order to evaluate the effect of the surface properties of NPs on tailoring the intensity of mass signals. METHODS: Regarding the LDI-MS analyses, the surface of superparamagnetic iron oxide nanoparticles (SPIONs) was coated with nitrosonium tetrafluoroborate, citric acid, nitrodopamine, and gallic acid. Additionally, the SPIONs were applied as a matrix to analyze three small peptides. In the MALDI-MS analyses, silica NPs were selected as co-matrix and functionalized with cysteine, sulfobetaine, and amine alkoxysilanes. Then, the silica NPs were utilized as additives in the MALDI-MS samples of four proteins in a mass range between ~2000 and 60,000 Da. RESULTS: The results of LDI-MS analyses demonstrated more than one order enhancement in the signal intensity of analytes based on the amount of electrostatic interaction and laser energy absorption by the surface ligands. However, those of MALDI-MS experiments indicated a significant signal improvement when achieving the colloidal stability of silica NPs in the matrix solution. CONCLUSIONS: Based on the results, the surface properties of NPs affected the (MA)LDI-MS analyses indispensably. Finally, the functionalization of SPIONs represented a new model for the future development of NPs with both affinity and enhanced ionization abilities in mass spectrometry.


Assuntos
Nanopartículas Magnéticas de Óxido de Ferro/química , Peptídeos/química , Proteínas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Dióxido de Silício/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação
3.
Anal Bioanal Chem ; 412(14): 3299-3315, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32107572

RESUMO

Spectroscopy with planar optical waveguides is still an active field of research for the quantitative analysis of various supramolecular surface architectures and processes, and for applications in integrated optical chip communication, direct chemical sensing, etc. In this contribution, we summarize some recent development in optical waveguide spectroscopy using nanoporous thin films as the planar substrates that can guide the light just as well as bulk thin films. This is because the nanoporosity is at a spacial length-scale that is far below the wavelength of the guided light; hence, it does not lead to an enhanced scattering or additional losses of the optical guided modes. The pores have mainly two effects: they generate an enormous inner surface (up to a factor of 100 higher than the mere geometric dimensions of the planar substrate) and they allow for the exchange of material and charges between the two sides of the solid thin film. We demonstrate this for several different scenarios including anodized aluminum oxide layers for the ultrasensitive determination of the refractive index of fluids, or the label-free detection of small analytes binding from the pore inner volume to receptors immobilized on the pore surface. Using a thin film of Ti metal for the anodization results in a nanotube array offering an even further enhanced inner surface and the possibility to apply electrical potentials via the resulting TiO2 semiconducting waveguide structure. Nanoporous substrates fabricated from SiNx thin films by colloid lithography, or made from SiO2 by e-beam lithography, will be presented as examples where the porosity is used to allow for the passage of ions in the case of tethered lipid bilayer membranes fused on top of the light-guiding layer, or the transport of protons through membranes used in fuel cell applications. The final example that we present concerns the replication of the nanopore structure by polymers in a process that leads to a nanorod array that is equally well suited to guide the light as the mold; however, it opens a totally new field for integrated optics formats for direct chemical and biomedical sensing with an extension to even molecularly imprinted structures. Graphical abstract.

4.
Langmuir ; 35(22): 7092-7104, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31035760

RESUMO

In this feature article, we summarize our recent work on understanding and controlling the thermal behavior of nanoparticles grafted with thermoresponsive polymer shells. Precision synthesis of monodisperse superparamagnetic iron oxide nanocrystals was combined with irreversible dense grafting of nitrodopamide-anchored thermoresponsive polymer chains. We provide an overview of how the dense and stable grafting of biomedically relevant polymers, including poly(ethylene glycol), poly( N-isopropylacrylamide), polysarcosin, and polyoxazolines, can be achieved. This platform has made it possible for us to demonstrate that the polymer brush geometry, as defined by the nanoparticle core and relative polymer brush size, determines the thermal transitions of the polymer brush. We furthermore summarize our work on how the polymer shell transitions and nanoparticle aggregation can be tuned. With the independent variation of the core and the shell, we can optimize and precisely control the thermally controlled solubility of our system. Finally, our feature article gives examples relevant to current and future applications. We show how the thermal response of the shell influences the nanoparticle performance in biological fluids and interactions with proteins and cells, also under purely magnetic actuation of the nanoparticles through the superparamagnetic iron oxide core.

5.
Langmuir ; 35(3): 739-749, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30580525

RESUMO

Liposomes grafted with polymer have long been used in drug delivery applications, and block copolymersomes have emerged as attractive and more robust alternatives for both drug delivery and artificial organelle applications. Hybrid membranes that could combine the respective advantages of fluid lipid and robust polymer bilayers are an attractive and enticing alternative. The properties of membranes in amphiphile vesicles are challenging to study and many applications benefit from surface-based access to the membrane. We therefore explore the self-assembly and mechanical properties of supported hybrid bilayers (SHBs) composed of polybutadiene- block-poly(ethylene oxide) block copolymers and zwitterionic phosphatidylcholine lipids on SiO2 supports. Quartz crystal microbalance with dissipation monitoring (QCM-D) measurements show that formation of SHB on SiO2 by vesicle fusion depends on the mass fractions of lipids and block copolymers. Atomic force microscopy was used to study the microscopic mixing of lipids in the SHB to reveal that lipid-phase separation is not observed in SHBs. Force spectroscopy was performed to extract information about thickness and mechanical properties of the hybrid membranes. SHBs are shown to combine the properties of lipid membranes and polymer brushes, and the tip force required to rupture the membrane decreases and the bilayer thickness increases as the block copolymer fraction is increased.

6.
Biomacromolecules ; 20(4): 1709-1718, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30856330

RESUMO

Positive strand RNA viruses replicate in specialized niches called membranous web within the cytoplasm of host cells. These virus replication organelles sequester viral proteins, RNA, and a variety of host factors within a fluid, amorphous matrix of clusters of endoplasmic reticulum (ER) derived vesicles. They are thought to form by the actions of a nonstructural viral protein NS4B, which remodels the ER and produces dense lipid-protein condensates. Here, we used in vitro reconstitution to identify the minimal components and elucidate physical mechanisms driving the web formation. We found that the N-terminal amphipathic domain of NS4B (peptide 4BAH2) and phospholipid vesicles (∼100-200 nm in diameter) were sufficient to produce a gel-like, viscoelastic condensate. This condensate coexists with the surrounding aqueous phase and affords rapid exchange of molecules. Together, it recapitulates the essential properties of the virus-induced membranous web. Our data support a novel phase separation mechanism in which phospholipid vesicles provide a supramolecular template spatially organizing multiple self-associating peptides thereby generating programmable multivalency de novo and inducing macroscopic phase separation.


Assuntos
Hepacivirus/química , Membranas Artificiais , Peptídeos/química , Transição de Fase , Proteínas não Estruturais Virais/química , Domínios Proteicos
7.
Org Biomol Chem ; 17(18): 4491-4497, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30990509

RESUMO

A dual-metal catalysis system including a newly prepared nanoparticle [SiO2@organic-linker(OL)@Pd(II)] and CuI was introduced with ultra-high catalytic activity (high turnover number (TON), up to 19 000) to a one-pot and odorless synthesis of unsymmetrical aryl sulfides by crossover C-S bond formation. The reaction proceeds via C-O bond activation of phenols and direct C-S bond formation in the presence of S8 as an oddorless sulfur source and aryl boronic acids under mild conditions (room temperature). The catalyst could be recycled up to five times without an obvious change in its activity.

8.
Nano Lett ; 18(1): 381-385, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29231738

RESUMO

The function of integral membrane proteins is critically dependent on their naturally surrounding lipid membrane. Detergent-solubilized and purified membrane proteins are therefore often reconstituted into cell-membrane mimics and analyzed for their function with single-molecule microscopy. Expansion of this approach toward a broad range of pharmaceutically interesting drug targets and biomarkers however remains hampered by the fact that these proteins have low expression levels, and that detergent solubilization and reconstitution often cause protein conformational changes and loss of membrane-specific cofactors, which may impair protein function. To overcome this limitation, we here demonstrate how antibody-modified nanoparticles can be used to achieve affinity purification and enrichment of selected integral membrane proteins directly from cell membrane preparations. Nanoparticles were first bound to the ectodomain of ß-secretase 1 (BACE1) contained in cell-derived membrane vesicles. In a subsequent step, these were merged into a continuous supported membrane in a microfluidic channel. Through the extended nanoparticle tag, a weak (∼fN) hydrodynamic force could be applied, inducing directed in-membrane movement of targeted BACE1 exclusively. This enabled selective thousand-fold enrichment of the targeted membrane protein while preserving a natural lipid environment. In addition, nanoparticle-targeting also enabled simultaneous tracking analysis of each individual manipulated protein, revealing how their mobility changed when moved from one lipid environment to another. We therefore believe this approach will be particularly useful for separation in-line with single-molecule analysis, eventually opening up for membrane-protein sorting devices analogous to fluorescence-activated cell sorting.


Assuntos
Anticorpos Imobilizados/química , Membrana Celular/química , Proteínas de Membrana/isolamento & purificação , Nanopartículas/química , Secretases da Proteína Precursora do Amiloide/isolamento & purificação , Animais , Ácido Aspártico Endopeptidases/isolamento & purificação , Linhagem Celular , Humanos , Dispositivos Lab-On-A-Chip , Bicamadas Lipídicas/química , Lipossomos/química
9.
Biochim Biophys Acta Biomembr ; 1860(2): 319-328, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29106972

RESUMO

Artificial lipid bilayers in the form of planar supported or vesicular bilayers are commonly used as models for studying interaction of biological membranes with different substances such as proteins and small molecule pharmaceutical compounds. Lipid membranes are typically regarded as inert and passive scaffolds for membrane proteins, but both non-specific and specific interactions between biomolecules and lipid membranes are indeed ubiquitous; dynamic exchange of proteins from the environment at the membrane interface can strongly influence the function of biological membranes. Such exchanges would either be of a superficial (peripheral) or integrative (penetrating) nature. In the context of viral membranes (termed envelopes), this could contribute to the emergence of zoonotic infections as well as change the virulence and/or pathogenicity of viral diseases. In this study, we analyze adsorption/desorption patterns upon challenging tethered liposomes and enveloped virus particles with proteins - or protein mixtures - such as bovine serum albumin, glycosylphosphatidylinositol anchored proteins and serum, chosen for their different lipid-interaction capabilities. We employed quartz crystal microbalance and dual polarization interferometry measurements to measure protein/membrane interaction in real time. We identified differences in mass uptake between the challenges, as well as differences between variants of lipid bilayers. Tethered viral particles showed a similar adsorption/desorption behavior to liposomes, underlining their value as model system. We believe that this methodology may be developed into a new approach in virology and membrane research by enabling the combination of biophysical and biochemical information.


Assuntos
Bicamadas Lipídicas/química , Lipossomos/química , Proteínas de Membrana/química , Adsorção , Animais , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Gatos , Linhagem Celular , Herpesviridae/química , Herpesviridae/metabolismo , Humanos , Interferometria/métodos , Bicamadas Lipídicas/metabolismo , Lipossomos/metabolismo , Lipídeos de Membrana , Proteínas de Membrana/metabolismo , Ligação Proteica , Técnicas de Microbalança de Cristal de Quartzo , Vírion/química , Vírion/metabolismo
10.
Langmuir ; 34(1): 395-405, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29231739

RESUMO

Hybrid vesicles, comprising blends of amphiphilic block copolymers and phospholipids, have attracted significant attention recently because of their unique combination of chemical and physical properties. We report a method to make unilamellar hybrid vesicles with diameters of 100 nm by mixing polybutadiene-block-poly(ethylene oxide) and phosphocholine lipids using a combination of solvent inversion and sonication. We show that homogeneous hybrid vesicles are formed when one component is a minor fraction. At compositions with balanced mass fractions, separate populations of similarly sized pure liposomes and hybrid vesicles are indicated. We investigate the release kinetics of calcein encapsulated in the lumen as hybrid large and giant unilamellar vesicles (LUVs and GUVs) of different compositions are exposed to phospholipase A2 (PLA2). PLA2 hydrolyzes lipids, which leads to dissolution of lipid domains and provides a trigger for the release of calcein as pores are formed. We demonstrate that depending on the polymer mole fraction, block copolymers can either protect or boost the rate of lipid degradation and thereby the release rate from nanoscale hybrid vesicles. Strong indications of lipid phase separation into nanoscale domains in LUVs are observed. Most importantly, hybrid GUV with lipids in the fluid phase release calcein slowly as lipids in the liquid-disordered phase do not phase-separate, but they show the fastest release of all blends as LUVs. This indicates phase separation on the nanoscale in contrast to on the microscale, but it also indicates retained high mobility of lipids between the nanoscale domains, which is absent for lipids in the gel phase. Our results demonstrate several ways in which nanoscale hybrid vesicles can and should be optimized for PLA2-triggered release of water-soluble compounds.


Assuntos
Butadienos/química , Elastômeros/química , Fosfolipases A2/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Polietilenoglicóis/química , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Cálcio/química , Sonicação
11.
Biomacromolecules ; 19(5): 1435-1444, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29161516

RESUMO

The morphology and topology of thermoresponsive polymers have a strong impact on their responsive properties. Grafting onto spherical particles has been shown to reduce responsiveness and transition temperatures; grafting of block copolymers has shown that switchable or retained wettability of a surface or particle during desolvation of one block can take place. Here, doubly thermoresponsive block copolymers were grafted onto spherical, monodisperse, and superparamagnetic iron oxide nanoparticles to investigate the effect of thermal desolvation on spherical brushes of block copolymers. By inverting the block order, the influence of core proximity on the responsive properties of the individual blocks could be studied as well as their relative influence on the nanoparticle colloidal stability. The inner block was shown to experience a stronger reduction in transition temperature and transition enthalpy compared to the outer block. Still, the outer block also experiences a significant reduction in responsiveness due to the restricted environment in the nanoparticle shell compared to that of the free polymer state. The demonstrated pronounced distance dependence importantly implies the possibility, but also the necessity, to radially tailor polymer hydration transitions for applications such as drug delivery, hyperthermia, and biotechnological separation for which thermally responsive nanoparticles are being developed.


Assuntos
Temperatura Alta , Nanopartículas Metálicas/química , Polímeros/química , Coloides/química , Compostos Férricos/química , Molhabilidade
12.
Sensors (Basel) ; 18(7)2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941806

RESUMO

Cronobacter sakazakii is a foodborne pathogen that can cause a rare, septicemia, life-threatening meningitis, and necrotizing enterocolitis in infants. In general, standard methods for pathogen detection rely on culture, plating, colony counting and polymerase chain reaction DNA-sequencing for identification, which are time, equipment and skill demanding. Recently, nanoparticle- and surface-based immunoassays have increasingly been explored for pathogen detection. We investigate the functionalization of gold nanoparticles optimized for irreversible and specific binding to C. sakazakii and their use for spectroscopic detection of the pathogen. We demonstrate how 40-nm gold nanoparticles grafted with a poly(ethylene glycol) brush and functionalized with polyclonal antibodies raised against C. sakazakii can be used to specifically target C. sakazakii. The strong extinction peak of the Au nanoparticle plasmon polariton resonance in the optical range is used as a label for detection of the pathogens. Individual binding of the nanoparticles to the C. sakazakii surface is also verified by transmission electron microscopy. We show that a high degree of surface functionalization with anti-C. sakazakii optimizes the detection and leads to a detection limit as low as 10 CFU/mL within 2 h using a simple cuvette-based UV-Vis spectrometric readout that has great potential for further optimization.


Assuntos
Cronobacter sakazakii/imunologia , Cronobacter sakazakii/isolamento & purificação , Infecções por Enterobacteriaceae/microbiologia , Ouro/imunologia , Nanopartículas Metálicas , Animais , Cronobacter sakazakii/patogenicidade , Infecções por Enterobacteriaceae/diagnóstico , Humanos , Lactente , Limite de Detecção , Reação em Cadeia da Polimerase , Coelhos
13.
Angew Chem Int Ed Engl ; 56(16): 4507-4511, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28294482

RESUMO

Cyclic poly-2-ethyl-2-oxazoline (PEOXA) ligands for superparamagnetic Fe3 O4 nanoparticles (NPs) generate ultra-dense and highly compact shells, providing enhanced colloidal stability and bio-inertness in physiological media. When linear brush shells fail in providing colloidal stabilization to NPs, the cyclic ones assure long lasting dispersions. While the thermally induced dehydration of linear PEOXA shells cause irreversible aggregation of the NPs, the collapse and subsequent rehydration of similarly grafted cyclic brushes allow the full recovery of individually dispersed NPs. Although linear ligands are densely grafted onto Fe3 O4 cores, a small plasma protein such as bovine serum albumin (BSA) still physisorbs within their shells. In contrast, the impenetrable entropic shield provided by cyclic brushes efficiently prevents nonspecific interaction with proteins.

14.
Langmuir ; 32(17): 4259-69, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27046133

RESUMO

Fundamental research on nanoparticle (NP) interactions and development of next-generation biomedical NP applications relies on synthesis of monodisperse, functional, core-shell nanoparticles free of residual dispersants with truly homogeneous and controlled physical properties. Still, synthesis and purification of e.g. such superparamagnetic iron oxide NPs remain a challenge. Comparing the success of different methods is marred by the sensitivity of analysis methods to the purity of the product. We synthesize monodisperse, oleic acid (OA)-capped, Fe3O4 NPs in the superparamagnetic size range (3-10 nm). Ligand exchange of OA for poly(ethylene glycol) (PEG) was performed with the PEG irreversibly grafted to the NP surface by a nitrodopamine (NDA) anchor. Four different methods were investigated to remove excess ligands and residual OA: membrane centrifugation, dialysis, size exclusion chromatography, and precipitation combined with magnetic decantation. Infrared spectroscopy and thermogravimetric analysis were used to determine the purity of samples after each purification step. Importantly, only magnetic decantation yielded pure NPs at high yields with sufficient grafting density for biomedical applications (∼1 NDA-PEG(5 kDa)/nm(2), irrespective of size). The purified NPs withstand challenging tests such as temperature cycling in serum and long-term storage in biological buffers. Dynamic light scattering, transmission electron microscopy, and small-angle X-ray scattering show stability over at least 4 months also in serum. The successful synthesis and purification route is compatible with any conceivable functionalization for biomedical or biomaterial applications of PEGylated Fe3O4 NPs.

15.
Langmuir ; 31(33): 9198-204, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26226071

RESUMO

High-temperature synthesized monodisperse superparamagnetic iron oxide nanoparticles are obtained with a strongly bound ligand shell of oleic acid and its decomposition products. Most applications require a stable presentation of a defined surface chemistry; therefore, the native shell has to be completely exchanged for dispersants with irreversible affinity to the nanoparticle surface. We evaluate by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) the limitations of commonly used approaches. A mechanism and multiple exchange scheme that attains the goal of complete and irreversible ligand replacement on monodisperse nanoparticles of various sizes is presented. The obtained hydrophobic nanoparticles are ideally suited for magnetically controlled drug delivery and membrane applications and for the investigation of fundamental interfacial properties of ultrasmall core-shell architectures.


Assuntos
Compostos Férricos/química , Nanopartículas de Magnetita/química , Ácido Oleico/química , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas de Magnetita/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Sensors (Basel) ; 15(1): 1635-75, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25594599

RESUMO

Nanoscale biosensors provide the possibility to miniaturize optic, acoustic and electric sensors to the dimensions of biomolecules. This enables approaching single-molecule detection and new sensing modalities that probe molecular conformation. Nanoscale sensors are predominantly surface-based and label-free to exploit inherent advantages of physical phenomena allowing high sensitivity without distortive labeling. There are three main criteria to be optimized in the design of surface-based and label-free biosensors: (i) the biomolecules of interest must bind with high affinity and selectively to the sensitive area; (ii) the biomolecules must be efficiently transported from the bulk solution to the sensor; and (iii) the transducer concept must be sufficiently sensitive to detect low coverage of captured biomolecules within reasonable time scales. The majority of literature on nanoscale biosensors deals with the third criterion while implicitly assuming that solutions developed for macroscale biosensors to the first two, equally important, criteria are applicable also to nanoscale sensors. We focus on providing an introduction to and perspectives on the advanced concepts for surface functionalization of biosensors with nanosized sensor elements that have been developed over the past decades (criterion (iii)). We review in detail how patterning of molecular films designed to control interactions of biomolecules with nanoscale biosensor surfaces creates new possibilities as well as new challenges.


Assuntos
Técnicas Biossensoriais/instrumentação , Nanopartículas/química , Desenho de Equipamento , Propriedades de Superfície
17.
Nano Lett ; 13(12): 6122-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24188470

RESUMO

We introduce a novel optical biosensing platform that exploits the asymmetry of nanostructures embedded in nanocavities, termed nanomenhirs. Upon oblique illumination using plane polarized white light, two plasmonic resonances attributable to the bases and the axes of the nanomenhirs emerge; these are used for location-specific sensing of membrane-binding events. Numerical simulations of the near field distributions confirmed the experimental results. As a proof-of-concept, we present a model biosensing experiment that exploits the dual-sensing capability, the size selectivity offered by the sensor geometry, and the possibility to separately biochemically modify the nanomenhirs and the nanocavities for the specific binding of lipid membrane structures to the nanomenhirs.


Assuntos
Técnicas Biossensoriais , Lipídeos/química , Nanoestruturas/química , Ouro/química , Luz , Membranas/química , Ressonância de Plasmônio de Superfície
18.
J Mol Biol ; 436(13): 168627, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38795768

RESUMO

Rising antimicrobial resistance is a critical threat to worldwide public health. To address the increasing antibiotic tolerance, diverse antimicrobial agents are examined for their ability to decrease bacterial resistance. One of the most relevant and persistent human pathogens is Pseudomonas aeruginosa. Our study investigates the anti-biofilm and sensitizing activity of 12 morpholinium-based ionic liquids with herbicidal anions on four clinically relevant P. aeruginosa strains. Among all tested compounds, four ionic liquids prevented biofilm formation at sub-minimum inhibitory concentrations for all investigated strains. For the first time, we established a hormetic effect on biofilm formation for P. aeruginosa strains subjected to an ionic liquid treatment. Interestingly, while ionic liquids with 4,4-didecylmorpholinium [Dec2Mor]+ are more efficient against planktonic bacteria, 4-decyl-4-ethylmorpholinium [DecEtMor]+ showed more potent inhibition of biofilm formation. Ionic liquids with 4,4-didecylmorpholinium ([Dec2Mor]+) cations even induced biofilm formation by strain 39016 at high concentrations due to flocculation. Morpholinium-based ionic liquids were also shown to enhance the efficacy of commonly used antibiotics from different chemical groups. We demonstrate that this synergy is associated with the mode of action of the antibiotics.


Assuntos
Antibacterianos , Biofilmes , Líquidos Iônicos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Líquidos Iônicos/farmacologia , Líquidos Iônicos/química , Antibacterianos/farmacologia , Antibacterianos/química , Morfolinas/farmacologia , Morfolinas/química , Humanos , Sinergismo Farmacológico
19.
Artigo em Inglês | MEDLINE | ID: mdl-38593404

RESUMO

The cell plasma membrane is a two-dimensional, fluid mosaic material composed of lipids and proteins that create a semipermeable barrier defining the cell from its environment. Compared with soluble proteins, the methodologies for the structural and functional characterization of membrane proteins are challenging. An emerging tool for studies of membrane proteins in mammalian systems is a "plasma membrane on a chip," also known as a supported lipid bilayer. Here, we create the "plant-membrane-on-a-chip,″ a supported bilayer made from the plant plasma membranes of Arabidopsis thaliana, Nicotiana benthamiana, or Zea mays. Membrane vesicles from protoplasts containing transgenic membrane proteins and their native lipids were incorporated into supported membranes in a defined orientation. Membrane vesicles fuse and orient systematically, where the cytoplasmic side of the membrane proteins faces the chip surface and constituents maintain mobility within the membrane plane. We use plant-membrane-on-a-chip to perform fluorescent imaging to examine protein-protein interactions and determine the protein subunit stoichiometry of FLOTILLINs. We report here that like the mammalian FLOTILLINs, FLOTILLINs expressed in Arabidopsis form a tetrameric complex in the plasma membrane. This plant-membrane-on-a-chip approach opens avenues to studies of membrane properties of plants, transport phenomena, biophysical processes, and protein-protein and protein-lipid interactions in a convenient, cell-free platform.

20.
Phys Rev Lett ; 110(7): 075501, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25166382

RESUMO

Knotted chains are a promising class of polymers with many applications for materials science and drug delivery. Here we introduce an experimentally realizable model for the design of chains with controllable topological properties. Recently, we have developed a systematic methodology to construct self-assembling chains of simple particles, with final structures fully controlled by the sequence of particles along the chain. The individual particles forming the chain are colloids decorated with mutually interacting patches, which can be manufactured in the laboratory with current technology. Our methodology is applied to the design of sequences folding into self-knotting chains, in which the end monomers are by construction always close together in space. The knotted structure can then be externally locked simply by controlling the interaction between the end monomers, paving the way to applications in the design and synthesis of active materials and novel carriers for drugs delivery.


Assuntos
Coloides/química , Modelos Químicos , Polímeros/química , Algoritmos , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA