Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Phys Rev Lett ; 118(18): 183901, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28524674

RESUMO

Wireless data transmission systems such as wi-fi or Bluetooth emit coherent light-electromagnetic waves with a precisely known amplitude and phase. Propagating in space, this radiation forms a hologram-a two-dimensional wave front encoding a three-dimensional view of all objects traversed by the light beam. Here we demonstrate a scheme to record this hologram in a phase-coherent fashion across a meter-sized imaging region. We recover three-dimensional views of objects and emitters by feeding the resulting data into digital reconstruction algorithms. Employing a digital implementation of dark-field propagation to suppress multipath reflection, we significantly enhance the quality of the resulting images. We numerically simulate the hologram of a 10-m-sized building, finding that both localization of emitters and 3D tomography of absorptive objects could be feasible by this technique.

2.
Phys Rev Lett ; 118(3): 037601, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-28157351

RESUMO

Using pulsed photoionization the coherent spin manipulation and echo formation of ensembles of NV^{-} centers in diamond are detected electrically, realizing contrasts of up to 17%. The underlying spin-dependent ionization dynamics are investigated experimentally and compared to Monte Carlo simulations. This allows the identification of the conditions optimizing contrast and sensitivity, which compare favorably with respect to optical detection.

3.
Nano Lett ; 15(8): 4942-7, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26218205

RESUMO

To study the magnetic dynamics of superparamagnetic nanoparticles, we use scanning probe relaxometry and dephasing of the nitrogen vacancy (NV) center in diamond, characterizing the spin noise of a single 10 nm magnetite particle. Additionally, we show the anisotropy of the NV sensitivity's dependence on the applied decoherence measurement method. By comparing the change in relaxation (T1) and dephasing (T2) time in the NV center when scanning a nanoparticle over it, we are able to extract the nanoparticle's diameter and distance from the NV center using an Ornstein-Uhlenbeck model for the nanoparticle's fluctuations. This scanning probe technique can be used in the future to characterize different spin label substitutes for both medical applications and basic magnetic nanoparticle behavior.

4.
Nano Lett ; 15(1): 165-9, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25438091

RESUMO

Photonic structures in diamond are key to most of its application in quantum technology. Here, we demonstrate tapered nanowaveguides structured directly onto the diamond substrate hosting shallow-implanted nitrogen vacancy (NV) centers. By optimization based on simulations and precise experimental control of the geometry of these pillar-shaped nanowaveguides, we achieve a net photon flux up to ∼ 1.7 × 10(6) s(-1). This presents the brightest monolithic bulk diamond structure based on single NV centers so far. We observe no impact on excited state lifetime and electronic spin dephasing time (T2) due to the nanofabrication process. Possessing such high brightness with low background in addition to preserved spin quality, this geometry can improve the current nanomagnetometry sensitivity ∼ 5 times. In addition, it facilitates a wide range of diamond defects-based magnetometry applications. As a demonstration, we measure the temperature dependency of T1 relaxation time of a single shallow NV center electronic spin. We observe the two-phonon Raman process to be negligible in comparison to the dominant two-phonon Orbach process.

5.
Nano Lett ; 14(5): 2359-64, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24716609

RESUMO

For many applications of the nitrogen-vacancy (NV) center in diamond, the understanding and active control of its charge state is highly desired. In this work, we demonstrate the reversible manipulation of the charge state of a single NV center from NV(-) across NV(0) to a nonfluorescent, dark state by using an all-diamond in-plane gate nanostructure. Applying a voltage to the in-plane gate structure can influence the energy band bending sufficiently for charge state conversion of NV centers. These diamond in-plane structures can function as transparent top gates, enabling the distant control of the charge state of NV centers tens of micrometers away from the nanostructure.

6.
Phys Rev Lett ; 113(21): 217204, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25479520

RESUMO

We demonstrate the tracking of the spin dynamics of ensemble and individual magnetic ferritin proteins from cryogenic up to room temperature using the nitrogen-vacancy color center in diamond as a magnetic sensor. We employ different detection protocols to probe the influence of the ferritin nanomagnets on the longitudinal and transverse relaxation of the nitrogen-vacancy center, which enables magnetic sensing over a wide frequency range from Hz to GHz. The temperature dependence of the observed spectral features can be well understood by the thermally induced magnetization reversals of the ferritin and enables the determination of the anisotropy barrier of single ferritin molecules.

7.
Nano Lett ; 13(7): 3152-6, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23795752

RESUMO

We present a scanning-probe microscope based on an atomic-size emitter, a single nitrogen-vacancy center in a nanodiamond. We employ this tool to quantitatively map the near-field coupling between the NV center and a flake of graphene in three dimensions with nanoscale resolution. Further we demonstrate universal energy transfer distance scaling between a point-like atomic emitter and a two-dimensional acceptor. Our study paves the way toward a versatile single emitter scanning microscope, which could image and excite molecular-scale light fields in photonic nanostructures or single fluorescent molecules.


Assuntos
Grafite/química , Aumento da Imagem/métodos , Teste de Materiais/métodos , Microscopia de Força Atômica/métodos , Nanopartículas/química , Nanopartículas/ultraestrutura , Propriedades de Superfície
8.
Phys Rev Lett ; 108(20): 200402, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-23003128

RESUMO

We study decoherence of a single nitrogen-vacancy (NV) center induced by the 13C nuclear spin bath of diamond. By comparing Hahn-Echo experiments on single and double-quantum transitions of the NV triplet ground state we demonstrate that this bath can be tuned into two different regimes. At low magnetic fields, the nuclei behave as a quantum bath which causes decoherence by entangling with the NV central spin. At high magnetic fields, the bath behaves as a source of classical magnetic field noise, which creates decoherence by imprinting a random phase on the NV central spin.

10.
Nat Commun ; 12(1): 532, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483515

RESUMO

High-fidelity projective readout of a qubit's state in a single experimental repetition is a prerequisite for various quantum protocols of sensing and computing. Achieving single-shot readout is challenging for solid-state qubits. For Nitrogen-Vacancy (NV) centers in diamond, it has been realized using nuclear memories or resonant excitation at cryogenic temperature. All of these existing approaches have stringent experimental demands. In particular, they require a high efficiency of photon collection, such as immersion optics or all-diamond micro-optics. For some of the most relevant applications, such as shallow implanted NV centers in a cryogenic environment, these tools are unavailable. Here we demonstrate an all-optical spin readout scheme that achieves single-shot fidelity even if photon collection is poor (delivering less than 103 clicks/second). The scheme is based on spin-dependent resonant excitation at cryogenic temperature combined with spin-to-charge conversion, mapping the fragile electron spin states to the stable charge states. We prove this technique to work on shallow implanted NV centers, as they are required for sensing and scalable NV-based quantum registers.

11.
Sci Rep ; 10(1): 20078, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208817

RESUMO

Cellular micromotion-a tiny movement of cell membranes on the nm-µm scale-has been proposed as a pathway for inter-cellular signal transduction and as a label-free proxy signal to neural activity. Here we harness several recent approaches of signal processing to detect such micromotion in video recordings of unlabeled cells. Our survey includes spectral filtering of the video signal, matched filtering, as well as 1D and 3D convolutional neural networks acting on pixel-wise time-domain data and a whole recording respectively.


Assuntos
Movimento Celular , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Redes Neurais de Computação , Neurônios/fisiologia , Processamento de Sinais Assistido por Computador , Gravação em Vídeo , Gráficos por Computador , Humanos , Neurônios/citologia
12.
Science ; 347(6226): 1135-8, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25745170

RESUMO

Magnetic resonance is essential in revealing the structure and dynamics of biomolecules. However, measuring the magnetic resonance spectrum of single biomolecules has remained an elusive goal. We demonstrate the detection of the electron spin resonance signal from a single spin-labeled protein under ambient conditions. As a sensor, we use a single nitrogen vacancy center in bulk diamond in close proximity to the protein. We measure the orientation of the spin label at the protein and detect the impact of protein motion on the spin label dynamics. In addition, we coherently drive the spin at the protein, which is a prerequisite for studies involving polarization of nuclear spins of the protein or detailed structure analysis of the protein itself.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Imagem Molecular/métodos , Proteínas/química , Diamante/química , Proteínas Mad2/química , Microscopia de Força Atômica , Movimento (Física) , Nitrogênio/química , Polilisina/química , Marcadores de Spin
13.
Rev Sci Instrum ; 85(7): 073101, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25085121

RESUMO

We demonstrate that a recently introduced family of direct-emitting green laser diodes is a simple yet efficient light source for excitation of NV centers in diamond. Thanks to their fast (sub-ns) response time, these sources are suitable for a broad variety of measurements, including pulsed optically detected magnetic resonance (ODMR) and fluorescence lifetime imaging. This feature, together with a drastically simplified design, is a significant advantage over the traditional excitation system comprising an Nd: YAG laser switched by an acousto-optic modulator. We introduce a simple design for such a compact laser system and experimentally verify that it enables simultaneous lifetime and ODMR measurements on NV centers. In particular, we find that the NV(-) charge state remains stable in spite of the short excitation wavelength of the new source.

14.
Nat Commun ; 4: 1651, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23552066

RESUMO

Spin complexes comprising the nitrogen-vacancy centre and neighbouring spins are being considered as a building block for a new generation of spintronic and quantum information processing devices. As assembling identical spin clusters is difficult, new strategies are being developed to determine individual node structures with the highest precision. Here we use a pulse protocol to monitor the time evolution of the (13)C ensemble in the vicinity of a nitrogen-vacancy centre. We observe long-lived time correlations in the nuclear spin dynamics, limited by nitrogen-vacancy spin-lattice relaxation. We use the host (14)N spin as a quantum register and demonstrate that hyperfine-shifted resonances can be separated upon proper nitrogen-vacancy initialization. Intriguingly, we find that the amplitude of the correlation signal exhibits a sharp dependence on the applied magnetic field. We discuss this observation in the context of the quantum-to-classical transition proposed recently to explain the field dependence of the spin cluster dynamics.

15.
Nat Commun ; 3: 729, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22395620

RESUMO

The nitrogen-vacancy (NV) centre in diamond is a promising candidate for a solid-state qubit. However, its charge state is known to be unstable, discharging from the qubit state NV(-) into the neutral state NV(0) under various circumstances. Here we demonstrate that the charge state can be controlled by an electrolytic gate electrode. This way, single centres can be switched from an unknown non-fluorescent state into the neutral charge state NV(0), and the population of an ensemble of centres can be shifted from NV(0) to NV(-). Numerical simulations confirm the manipulation of the charge state to be induced by the gate-controlled shift of the Fermi level at the diamond surface. This result opens the way to a dynamic control of transitions between charge states and to explore hitherto inaccessible states, such as NV(+).

16.
ACS Nano ; 5(10): 7893-8, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21899301

RESUMO

We show highly efficient fluorescence resonance energy transfer (FRET) between negatively charged nitrogen-vacancy (NV) centers in diamond as donor and dye molecules as acceptor, respectively. The energy transfer efficiency is 86% with particles of 20 nm in size. Calculated and experimentally measured energy transfer efficiencies are in excellent agreement. Owing to the small size of the nanocrystals and careful surface preparation, energy transfer between a single nitrogen-vacancy center and a single quencher was identified by the stepwise change of energy transfer efficiencies due to bleaching of single acceptor molecules. Our studies pave the way toward FRET-based scanning probe techniques using single NV donors.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Nanodiamantes/química , Nitrogênio/química , Compostos Orgânicos/química , Corantes Fluorescentes/química , Modelos Moleculares , Conformação Molecular
17.
Artigo em Inglês | MEDLINE | ID: mdl-20040431

RESUMO

We report on the realization of a 6.834-GHz synthesis chain for the trapped atom clock on a chip (TACC) that is being developed at LNE-SYRTE. The chain is based on the frequency multiplication of a 100-MHz reference signal to obtain a signal at 6.4 GHz. It uses a comb generator based on a monolithic GaAs nonlinear transmission line. This is a novelty in the fabrication of high-stability microwave synthesizers. Measurements give a low flicker phase noise of -85 dBrad(2)/Hz at 1-Hz offset frequency and a white phase noise floor < -115 dBrad(2)/Hz. Based on these results, we estimate that the performance of the synthesizer is at least one order of magnitude better than the stability goal of TACC. This ensures that the synthesizer will not be limiting the clock performance.


Assuntos
Sistemas Microeletromecânicos/instrumentação , Oscilometria/instrumentação , Fatores de Tempo , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Micro-Ondas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Artigo em Inglês | MEDLINE | ID: mdl-20040433

RESUMO

We present an atomic clock based on the interrogation of magnetically trapped (87)Rb atoms. Two photons, in the microwave and radiofrequency domain, excite the clock transition. At a magnetic field of 3.23 G the clock transition from |F = 1, m(F) = -1> to |F = 2, m(F) = 1> is 1st-order insensitive to magnetic field variations. Ramsey interrogation times longer than 2 s can be achieved, leading to a projected clock stability in the low 10(-13) at 1 s for a cloud of 10(5) atoms. We use an atom chip to cool and trap the atoms. A coplanar waveguide is integrated to the chip to carry the Ramsey interrogation signal, making the physics package as small as (5 cm)(3). We describe the experimental setup and show preliminary Ramsey fringes of line width 1.25 Hz.


Assuntos
Radioisótopos/química , Rubídio/química , Fatores de Tempo , Fótons , Espalhamento de Radiação
19.
J Chem Phys ; 126(1): 014102, 2007 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-17212485

RESUMO

Despite its prominent contribution to the free energy of solvated macromolecules such as proteins or DNA, and although principally contained within molecular dynamics simulations, the entropy of the solvation shell is inaccessible to straightforward application of established entropy estimation methods. The complication is twofold. First, the configurational space density of such systems is too complex for a sufficiently accurate fit. Second, and in contrast to the internal macromolecular dynamics, the configurational space volume explored by the diffusive motion of the solvent molecules is too large to be exhaustively sampled by current simulation techniques. Here, we develop a method to overcome the second problem and to significantly alleviate the first one. We propose to exploit the permutation symmetry of the solvent by transforming the trajectory in a way that renders established estimation methods applicable, such as the quasiharmonic approximation or principal component analysis. Our permutation-reduced approach involves a combinatorial problem, which is solved through its equivalence with the linear assignment problem, for which O(N3) methods exist. From test simulations of dense Lennard-Jones gases, enhanced convergence and improved entropy estimates are obtained. Moreover, our approach renders diffusive systems accessible to improved fit functions.


Assuntos
Algoritmos , Biopolímeros/química , Modelos Químicos , Modelos Moleculares , Solventes/química , Água/química , Simulação por Computador , Entropia , Modelos Estatísticos , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA