Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339011

RESUMO

In childhood, retinoblastoma (RB) is the most common primary tumor in the eye. Long term therapeutic management with etoposide of this life-threatening condition may have diminishing effectiveness since RB cells can develop cytostatic resistance to this drug. To determine whether changes in receptor-mediated control of Ca2+ signaling are associated with resistance development, fluorescence calcium imaging, semi-quantitative RT-qPCR analyses, and trypan blue dye exclusion staining patterns are compared in WERI-ETOR (etoposide-insensitive) and WERI-Rb1 (etoposide-sensitive) cells. The cannabinoid receptor agonist 1 (CNR1) WIN55,212-2 (40 µM), or the transient receptor potential melastatin 8 (TRPM8) agonist icilin (40 µM) elicit similar large Ca2+ transients in both cell line types. On the other hand, NGF (100 ng/mL) induces larger rises in WERI-ETOR cells than in WERI-Rb1 cells, and its lethality is larger in WERI-Rb1 cells than in WERI-ETOR cells. NGF and WIN55,212-2 induced additive Ca2+ transients in both cell types. However, following pretreatment with both NGF and WIN55,212-2, TRPM8 gene expression declines and icilin-induced Ca2+ transients are completely blocked only in WERI-ETOR cells. Furthermore, CNR1 gene expression levels are larger in WERI-ETOR cells than those in WERI-Rb1 cells. Therefore, the development of etoposide insensitivity may be associated with rises in CNR1 gene expression, which in turn suppress TRPM8 gene expression through crosstalk.


Assuntos
Receptor de Fator de Crescimento Neural , Neoplasias da Retina , Retinoblastoma , Canais de Cátion TRPM , Humanos , Linhagem Celular , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , Proteínas de Membrana/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Neoplasias da Retina/tratamento farmacológico , Retinoblastoma/tratamento farmacológico , Retinoblastoma/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Receptor CB1 de Canabinoide/metabolismo
2.
Int J Mol Sci ; 23(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35409416

RESUMO

Chemotherapy resistance is one of the reasons for eye loss in patients with retinoblastoma (RB). RB chemotherapy resistance has been studied in different cell culture models, such as WERI-RB1. In addition, chemotherapy-resistant RB subclones, such as the etoposide-resistant WERI-ETOR cell line have been established to improve the understanding of chemotherapy resistance in RB. The objective of this study was to characterize cell line models of an etoposide-sensitive WERI-RB1 and its etoposide-resistant subclone, WERI-ETOR, by proteomic analysis. Subsequently, quantitative proteomics data served for correlation analysis with known drug perturbation profiles. Methodically, WERI-RB1 and WERI-ETOR were cultured, and prepared for quantitative mass spectrometry (MS). This was carried out in a data-independent acquisition (DIA) mode. The raw SWATH (sequential window acquisition of all theoretical mass spectra) files were processed using neural networks in a library-free mode along with machine-learning algorithms. Pathway-enrichment analysis was performed using the REACTOME-pathway resource, and correlated to the molecular signature database (MSigDB) hallmark gene set collections for functional annotation. Furthermore, a drug-connectivity analysis using the L1000 database was carried out to associate the mechanism of action (MOA) for different anticancer reagents to WERI-RB1/WERI-ETOR signatures. A total of 4756 proteins were identified across all samples, showing a distinct clustering between the groups. Of these proteins, 64 were significantly altered (q < 0.05 & log2FC |>2|, 22 higher in WERI-ETOR). Pathway analysis revealed the "retinoid metabolism and transport" pathway as an enriched metabolic pathway in WERI-ETOR cells, while the "sphingolipid de novo biosynthesis" pathway was identified in the WERI-RB1 cell line. In addition, this study revealed similar protein signatures of topoisomerase inhibitors in WERI-ETOR cells as well as ATPase inhibitors, acetylcholine receptor antagonists, and vascular endothelial growth factor receptor (VEGFR) inhibitors in the WERI-RB1 cell line. In this study, WERI-RB1 and WERI-ETOR were analyzed as a cell line model for chemotherapy resistance in RB using data-independent MS. Analysis of the global proteome identified activation of "sphingolipid de novo biosynthesis" in WERI-RB1, and revealed future potential treatment options for etoposide resistance in RB.


Assuntos
Neoplasias da Retina , Retinoblastoma , Linhagem Celular Tumoral , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , Humanos , Proteômica , Neoplasias da Retina/metabolismo , Retinoblastoma/tratamento farmacológico , Retinoblastoma/genética , Retinoblastoma/metabolismo , Proteínas de Ligação a Retinoblastoma/metabolismo , Esfingolipídeos , Inibidores da Topoisomerase , Ubiquitina-Proteína Ligases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Lab Invest ; 101(1): 70-88, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32948812

RESUMO

There are indications that pharmacological doses of ascorbate (Asc) used as an adjuvant improve the chemotherapeutic management of cancer. This favorable outcome stems from its cytotoxic effects due to prooxidative mechanisms. Since regulation of intracellular Ca2+ levels contributes to the maintenance of cell viability, we hypothesized that one of the effects of Asc includes disrupting regulation of intracellular Ca2+ homeostasis. Accordingly, we determined if Asc induced intracellular Ca2+ influx through activation of pertussis sensitive Gi/o-coupled GPCR which in turn activated transient receptor potential (TRP) channels in both etoposide-resistant and -sensitive retinoblastoma (WERI-Rb1) tumor cells. Ca2+ imaging, whole-cell patch-clamping, and quantitative real-time PCR (qRT-PCR) were performed in parallel with measurements of RB cell survival using Trypan Blue cell dye exclusion. TRPM7 gene expression levels were similar in both cell lines whereas TRPV1, TRPM2, TRPA1, TRPC5, TRPV4, and TRPM8 gene expression levels were downregulated in the etoposide-resistant WERI-Rb1 cells. In the presence of extracellular Ca2+, 1 mM Asc induced larger intracellular Ca2+ transients in the etoposide-resistant WERI-Rb1 than in their etoposide-sensitive counterpart. With either 100 µM CPZ, 500 µM La3+, 10 mM NAC, or 100 µM 2-APB, these Ca2+ transients were markedly diminished. These inhibitors also had corresponding inhibitory effects on Asc-induced rises in whole-cell currents. Pertussis toxin (PTX) preincubation blocked rises in Ca2+ influx. Microscopic analyses showed that after 4 days of exposure to 1 mM Asc cell viability fell by nearly 100% in both RB cell lines. Taken together, one of the effects underlying oxidative mediated Asc-induced WERI-Rb1 cytotoxicity stems from its promotion of Gi/o coupled GPCR mediated increases in intracellular Ca2+ influx through TRP channels. Therefore, designing drugs targeting TRP channel modulation may be a viable approach to increase the efficacy of chemotherapeutic treatment of RB. Furthermore, Asc may be indicated as a possible supportive agent in anti-cancer therapies.


Assuntos
Antioxidantes/uso terapêutico , Ácido Ascórbico/uso terapêutico , Neoplasias da Retina/tratamento farmacológico , Retinoblastoma/tratamento farmacológico , Canais de Potencial de Receptor Transitório/metabolismo , Antineoplásicos Fitogênicos , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Etoposídeo , Humanos , Estresse Oxidativo , Neoplasias da Retina/metabolismo , Retinoblastoma/metabolismo
4.
Int J Mol Sci ; 21(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560557

RESUMO

Retinoblastoma (RB) represents the most common malignant childhood eye tumor worldwide. Several studies indicate that the extracellular matrix (ECM) plays a crucial role in tumor growth and metastasis. Moreover, recent studies indicate that the ECM composition might influence the development of resistance to chemotherapy drugs. The objective of this study was to evaluate possible expression differences in the ECM compartment of the parental human cell lines WERI-RB1 (retinoblastoma 1) and Y79 and their Etoposide resistant subclones via polymerase chain reaction (PCR). Western blot analyses were performed to analyze protein levels. To explore the influence of ECM molecules on RB cell proliferation, death, and cluster formation, WERI-RB1 and resistant WERI-ETOR cells were cultivated on Fibronectin, Laminin, Tenascin-C, and Collagen IV and analyzed via time-lapse video microscopy as well as immunocytochemistry. We revealed a significantly reduced mRNA expression of the proteoglycans Brevican, Neurocan, and Versican in resistant WERI-ETOR compared to sensitive WERI-RB1 cells. Also, for the glycoproteins α1-Laminin, Fibronectin, Tenascin-C, and Tenascin-R as well as Collagen IV, reduced expression levels were observed in WERI-ETOR. Furthermore, a downregulation was detected for the matrix metalloproteinases MMP2, MMP7, MMP9, the tissue-inhibitor of metalloproteinase TIMP2, the Integrin receptor subunits ITGA4, ITGA5 and ITGB1, and all receptor protein tyrosine phosphatase ß/ζ isoforms. Downregulation of Brevican, Collagen IV, Tenascin-R, MMP2, TIMP2, and ITGA5 was also verified in Etoposide resistant Y79 cells compared to sensitive ones. Protein levels of Tenascin-C and MMP-2 were comparable in both WERI cell lines. Interestingly, Fibronectin displayed an apoptosis-inducing effect on WERI-RB1 cells, whereas an anti-apoptotic influence was observed for Tenascin-C. Conversely, proliferation of WERI-ETOR cells was enhanced on Tenascin-C, while an anti-proliferative effect was observed on Fibronectin. In WERI-ETOR, cluster formation was decreased on the substrates Collagen IV, Fibronectin, and Tenascin-C. Collectively, we noted a different ECM mRNA expression and behavior of Etoposide resistant compared to sensitive RB cells. These findings may indicate a key role of ECM components in chemotherapy resistance formation of RB.


Assuntos
Biomarcadores Tumorais , Resistencia a Medicamentos Antineoplásicos/genética , Etoposídeo/farmacologia , Matriz Extracelular/metabolismo , Expressão Gênica , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Humanos , Metaloproteinases da Matriz/metabolismo , RNA Mensageiro , Receptores de Superfície Celular/genética , Retinoblastoma , Inibidores Teciduais de Metaloproteinases/metabolismo
5.
Biochem Soc Trans ; 47(6): 1651-1660, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31845742

RESUMO

The extracellular matrix (ECM) consists of a dynamic network of various macromolecules that are synthesized and released by surrounding cells into the intercellular space. Glycoproteins, proteoglycans and fibrillar proteins are main components of the ECM. In addition to general functions such as structure and stability, the ECM controls several cellular signaling pathways. In this context, ECM molecules have a profound influence on intracellular signaling as receptor-, adhesion- and adaptor-proteins. Due to its various functions, the ECM is essential in the healthy organism, but also under pathological conditions. ECM constituents are part of the glial scar, which is formed in several neurodegenerative diseases that are accompanied by the activation and infiltration of glia as well as immune cells. Remodeling of the ECM modulates the release of pro- and anti-inflammatory cytokines affecting the fate of immune, glial and neuronal cells. Tenascin-C is an ECM glycoprotein that is expressed during embryonic central nervous system (CNS) development. In adults it is present at lower levels but reappears under pathological conditions such as in brain tumors, following injury and in neurodegenerative disorders and is highly associated with glial reactivity as well as scar formation. As a key modulator of the immune response during neurodegeneration in the CNS, tenascin-C is highlighted in this mini-review.


Assuntos
Doenças do Sistema Nervoso Central/metabolismo , Fatores Imunológicos/metabolismo , Inflamação/metabolismo , Tenascina/metabolismo , Animais , Astrócitos/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Neuroglia/metabolismo , Transdução de Sinais
6.
Exp Brain Res ; 237(11): 2983-2993, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31515588

RESUMO

Acoustic trauma, aging, genetic defects or ototoxic drugs are causes for sensorineural hearing loss involving sensory hair cell death and secondary degeneration of spiral ganglion neurons. Auditory implants are the only available therapy for severe to profound sensorineural hearing loss when hearing aids do not provide a sufficient speech discrimination anymore. Neurotrophic factors represent potential therapeutic candidates to improve the performance of cochlear implants (CIs) by the support of spiral ganglion neurons (SGNs). Here, we investigated the effect of pleiotrophin (PTN), a well-described neurotrophic factor for different types of neurons that is expressed in the postnatal mouse cochlea. PTN knockout mice exhibit severe deficits in auditory brainstem responses, which indicates the importance of PTN in inner ear development and function and makes it a promising candidate to support SGNs. Using organotypic explants and dissociated SGN cultures, we investigated the influence of PTN on the number of neurons, neurite number and neurite length. PTN significantly increased the number and neurite length of dissociated SGNs. We further verified the expression of important PTN-associated receptors in the SG. mRNA of anaplastic lymphoma kinase, αv integrin, ß3 integrin, receptor protein tyrosine phosphatase ß/ζ, neuroglycan C, low-density lipoprotein receptor-related protein 1 and syndecan 3 was detected in the inner ear. These results suggest that PTN may be a novel candidate to improve sensorineural hearing loss treatment in the future.


Assuntos
Proteínas de Transporte/fisiologia , Citocinas/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Neurônios/fisiologia , Gânglio Espiral da Cóclea/fisiologia , Animais , Citocinas/deficiência , Feminino , Células HEK293 , Perda Auditiva Neurossensorial/patologia , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Neuritos/fisiologia
7.
Int J Mol Sci ; 20(10)2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31137749

RESUMO

Studies have suggested an involvement of the immune system in glaucoma. Hence, a rat experimental autoimmune glaucoma model (EAG) was developed to investigate the role of the immune response. Here, we transferred this model into mice. Either 0.8 mg/mL of the optic nerve antigen homogenate (ONA; ONA 0.8) or 1.0 mg/mL ONA (ONA 1.0) were injected in 129/Sv mice. Controls received sodium chloride. Before and 6 weeks after immunization, the intraocular pressure (IOP) was measured. At 6 weeks, retinal neurons, glia cells, and synapses were analyzed via immunohistology and quantitative real-time PCR (RT-qPCR). Additionally, optic nerves were examined. The IOP stayed in the normal physiological range throughout the study (p > 0.05). A significant reduction of retinal ganglion cells (RGCs) was noted in both immunized groups (p < 0.001). Remodeling of glutamatergic and GABAergic synapses was seen in ONA 1.0 retinas. Furthermore, both ONA groups revealed optic nerve degeneration and macrogliosis (all: p < 0.001). An increase of activated microglia was noted in ONA retinas and optic nerves (p < 0.05). Both ONA concentrations led to RGC loss and optic nerve degeneration. Therefore, the EAG model was successfully transferred from rats to mice. In further studies, transgenic knockout mice can be used to investigate the pathomechanisms of glaucoma more precisely.


Assuntos
Autoanticorpos/toxicidade , Doenças Autoimunes do Sistema Nervoso/patologia , Glaucoma/patologia , Retina/patologia , Animais , Autoanticorpos/imunologia , Doenças Autoimunes do Sistema Nervoso/imunologia , Doenças Autoimunes do Sistema Nervoso/fisiopatologia , Modelos Animais de Doenças , Glaucoma/imunologia , Glaucoma/fisiopatologia , Pressão Intraocular , Camundongos , Nervo Óptico/imunologia , Nervo Óptico/patologia , Retina/imunologia , Sinapses/patologia
8.
Biol Chem ; 398(5-6): 663-675, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28214347

RESUMO

Small GTP-hydrolyzing enzymes (GTPases) of the RhoA family play manifold roles in cell biology and are regulated by upstream guanine nucleotide exchange factors (GEFs). Herein, we focus on the GEFs of the Vav subfamily. Vav1 was originally described as a proto-oncogene of the hematopoietic lineage. The GEFs Vav2 and Vav3 are more broadly expressed in various tissues. In particular, the GEF Vav3 may play important roles in the developing nervous system during the differentiation of neural stem cells into the major lineages, namely neurons, oligodendrocytes and astrocytes. We discuss its putative regulatory roles for progenitor differentiation in the developing retina, polarization of neurons and formation of synapses, migration of oligodendrocyte progenitors and establishment of myelin sheaths. We propose that Vav3 mediates the response of various neural cell types to environmental cues.


Assuntos
Sistema Nervoso Central/crescimento & desenvolvimento , Plasticidade Neuronal , Proteínas Proto-Oncogênicas c-vav/metabolismo , Animais , Sistema Nervoso Central/citologia , Humanos , Bainha de Mielina/metabolismo , Células-Tronco Neurais/citologia , Proto-Oncogene Mas , Sinapses/metabolismo
9.
J Cell Mol Med ; 20(11): 2122-2137, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27374750

RESUMO

Glaucoma is characterized by the loss of retinal ganglion cells (RGCs) and optic nerve fibres. Previous studies noted fewer RGCs after immunization with ocular antigens at 28 days. It is known that changes in extracellular matrix (ECM) components conduct retina and optic nerve degeneration. Here, we focused on the remodelling of tenascin-C and phosphacan/receptor protein tyrosine phosphatase ß/ζ in an autoimmune glaucoma model. Rats were immunized with optic nerve homogenate (ONA) or S100B protein (S100). Controls received sodium chloride (Co). After 14 days, no changes in RGC number were noted in all groups. An increase in GFAP mRNA expression was observed in the S100 group, whereas no alterations were noted via immunohistochemistry in both groups. Extracellular matrix remodelling was analyzed after 3, 7, 14 and 28 days. Tenascin-C and 473HD immunoreactivity in retinae and optic nerves was unaltered in both immunized groups at 3 days. At 7 days, tenascin-C staining increased in both tissues in the ONA group. Also, in the optic nerves of the S100 group, an intense tenascin-C staining could be shown. In the retina, an increased tenascin-C expression was also observed in ONA animals via Western blot. 473HD immunoreactivity was elevated in the ONA group in both tissues and in the S100 optic nerves at 7 days. At 14 days, tenascin-C and 473HD immunoreactivity was up-regulated in the ONA retinae, whereas phosphacan expression was up-regulated in both groups. We conclude that remodelling of tenascin-C and phosphacan occurred shortly after immunization, already before RGC loss. We assume that both ECM molecules represent early indicators of neurodegeneration.


Assuntos
Doenças Autoimunes/metabolismo , Glaucoma/metabolismo , Nervo Óptico/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Retina/metabolismo , Tenascina/metabolismo , Animais , Anticorpos/metabolismo , Doenças Autoimunes/patologia , Contagem de Células , Modelos Animais de Doenças , Glaucoma/patologia , Masculino , Neuroglia/metabolismo , Nervo Óptico/patologia , Ratos Endogâmicos Lew , Retina/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia
11.
Glia ; 63(8): 1330-49, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25913849

RESUMO

Neuroepithelial and radial GLIA stem cells generate the majority of the cellular constituents of the central nervous system. Following precisely timed phases of neurogenesis and gliogenesis the stem cells recede, with the exception of adult neural stem cells that persist in two generally accepted canonical neurogenic regions, the subventricular zone of the lateral ventricle and the subgranular zone in the dentate gyrus of the hippocampus. It is believed that adult stem cells reside in privileged stem cell niche environments that provide favorable conditions for self-renewal and maintenance of this cellular compartment. Factors such as morphogens, cytokines, and growth factors influence the developmental pathway of neural stem/progenitor cells. By comparison, less is known about the regulatory roles of glycoproteins and proteoglycans of the extracellular matrix (ECM) and their receptors, although they represent important constituents of the micromolecular environment of the niche. Here, we summarize studies that indicate pivotal roles of the ECM micromilieu for the biology and instrumental use of glial stem and progenitor cells of the CNS. Advancing our understanding of structure-function relationships, signaling motifs and complementary receptors and their signal transduction pathways will be of central importance for the application of these cell types in regenerative medicine.


Assuntos
Matriz Extracelular/metabolismo , Células-Tronco Neurais/fisiologia , Neuroglia/fisiologia , Animais , Humanos , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Neuroglia/citologia
12.
Cell Tissue Res ; 359(2): 423-440, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25501893

RESUMO

The seven main cell types in the mammalian retina arise from multipotent retinal progenitor cells, a process that is tightly regulated by intrinsic and extrinsic signals. However, the molecular mechanisms that control proliferation, differentiation and cell-fate decisions of retinal progenitor cells are not fully understood yet. Here, we report that the guanine nucleotide exchange factor Vav3, a regulator of Rho-GTPases, is involved in retinal development. We demonstrate that Vav3 is expressed in the mouse retina during the embryonic period. In order to study the role of Vav3 in the developing retina, we generate Vav3-deficient mice. The loss of Vav3 results in an accelerated differentiation of retinal ganglion cells and cone photoreceptors during early and late embryonic development. We provide evidence that more retinal progenitor cells express the late progenitor marker Sox9 in Vav3-deficient mice than in wild-types. This premature differentiation is compensated during the postnatal period and late-born cell types such as bipolar cells and Müller glia display normal numbers. Taken together, our data imply that Vav3 is a regulator of retinal progenitor cell differentiation, thus highlighting a novel role for guanine nucleotide exchange factors in retinogenesis.


Assuntos
Diferenciação Celular , Proteínas Proto-Oncogênicas c-vav/metabolismo , Retina/citologia , Retina/embriologia , Células-Tronco/citologia , Animais , Animais Recém-Nascidos , Ciclo Celular , Proliferação de Células , Desenvolvimento Embrionário , Marcação de Genes , Camundongos Knockout , Modelos Biológicos , Proteínas Proto-Oncogênicas c-vav/deficiência , Retina/metabolismo
13.
Exp Eye Res ; 133: 132-40, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25017186

RESUMO

The extracellular matrix (ECM) consists of a versatile and dynamic meshwork of proteoglycans and glycoproteins and plays an important functional role in complex tissues such as the developing retina. ECM forms the milieu surrounding retinal cells, constitutes basement membranes and provides structural as well as mechanical support. In addition, ECM molecules regulate the retinal homeostasis and cellular signaling. This review discusses the current state of ECM remodeling and its function during retinal development. In addition, we illustrate how ECM components control axonal growth and guidance of retinal ganglion cells and focus on ECM modulation during de- and regeneration processes.


Assuntos
Membrana Basal/metabolismo , Matriz Extracelular/fisiologia , Retina/crescimento & desenvolvimento , Animais , Humanos , Neurônios/metabolismo , Proteoglicanas/metabolismo , Retina/metabolismo , Transdução de Sinais
14.
iScience ; 27(2): 108846, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38318351

RESUMO

Visual processing depends on sensitive and balanced synaptic neurotransmission. Extracellular matrix proteins in the environment of cells are key modulators in synaptogenesis and synaptic plasticity. In the present study, we provide evidence that the combined loss of the four extracellular matrix components, brevican, neurocan, tenascin-C, and tenascin-R, in quadruple knockout mice leads to severe retinal dysfunction and diminished visual motion processing in vivo. Remarkably, impaired visual motion processing was accompanied by a developmental loss of cholinergic direction-selective starburst amacrine cells. Additionally, we noted imbalance of inhibitory and excitatory synaptic signaling in the quadruple knockout retina. Collectively, the study offers insights into the functional importance of four key extracellular matrix proteins for retinal function, visual motion processing, and synaptic signaling.

15.
Dev Biol ; 369(2): 163-76, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22691363

RESUMO

The retina represents an ideal model system for studying developmental processes during morphogenesis. The knowledge of the precise regulation and combination of genetic pre-dispositions and environmental circumstances enables the understanding of pathologies and the subsequent development or/and improvement of therapeutic strategies. This study focused on the functional analysis of the extracellular matrix (ECM) molecule Tenascin C (Tnc) in the retinal stem/progenitor cell environment. In this perspective, a Tnc(-/-) mouse was examined for potential alterations in proliferation and differentiation programs by using immunohistochemistry, RT-PCR analysis and bioassays. It could be shown that both cycling G2-phase cells and early post-mitotic neurons were significantly increased in the retina due to Tnc-deficiency. Further investigations suggested that Tnc regulates these processes via the Wnt-signaling cascade. Therapeutic approaches in the treatment of degenerative diseases often integrate cell-replacement strategies. Retinal Müller glia cells represent the glia of the retina and are described to possess the ability to re-enter the cell cycle and generate neurons in response to injury. In this study, the de-differentiation was induced by FGF2. It was found out that Tnc influences the de-differentiation behavior of adherent Müller glia in vitro. Moreover, it was interesting to investigate the effect of the absence of Tnc on the composition of other components of the ECM. A special focus lay on the expression of a specifically sulfated carbohydrate motif on chondroitin sulfate glycosaminoglycan chains, which can be detected with the mAb 473HD. It was possible to note a significant increase of this particular chondroitin sulfate in the Tnc-deficient ECM.


Assuntos
Neuroglia/citologia , Neuroglia/fisiologia , Retina/citologia , Retina/embriologia , Tenascina/fisiologia , Animais , Compartimento Celular , Pontos de Checagem do Ciclo Celular , Desdiferenciação Celular , Diferenciação Celular , Proliferação de Células , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Matriz Extracelular/fisiologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/fisiologia , Fase G2 , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Retina/fisiologia , Tenascina/deficiência , Tenascina/genética
16.
Front Cell Dev Biol ; 10: 886527, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721494

RESUMO

Fast-spiking parvalbumin interneurons are critical for the function of mature cortical inhibitory circuits. Most of these neurons are enwrapped by a specialized extracellular matrix (ECM) structure called perineuronal net (PNN), which can regulate their synaptic input. In this study, we investigated the relationship between PNNs, parvalbumin interneurons, and synaptic distribution on these cells in the adult primary visual cortex (V1) of quadruple knockout mice deficient for the ECM molecules brevican, neurocan, tenascin-C, and tenascin-R. We used super-resolution structured illumination microscopy (SIM) to analyze PNN structure and associated synapses. In addition, we examined parvalbumin and calretinin interneuron populations. We observed a reduction in the number of PNN-enwrapped cells and clear disorganization of the PNN structure in the quadruple knockout V1. This was accompanied by an imbalance of inhibitory and excitatory synapses with a reduction of inhibitory and an increase of excitatory synaptic elements along the PNNs. Furthermore, the number of parvalbumin interneurons was reduced in the quadruple knockout, while calretinin interneurons, which do not wear PNNs, did not display differences in number. Interestingly, we found the transcription factor Otx2 homeoprotein positive cell population also reduced. Otx2 is crucial for parvalbumin interneuron and PNN maturation, and a positive feedback loop between these parameters has been described. Collectively, these data indicate an important role of brevican, neurocan, tenascin-C, and tenascin-R in regulating the interplay between PNNs, inhibitory interneurons, synaptic distribution, and Otx2 in the V1.

17.
Matrix Biol ; 110: 1-15, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35430380

RESUMO

Cellular responses in glia play a key role in regulating brain remodeling post-stroke. However, excessive glial reactivity impedes post-ischemic neuroplasticity and hampers neurological recovery. While damage-associated molecular patterns and activated microglia were shown to induce astrogliosis, the molecules that restrain astrogliosis are largely unknown. We explored the role of tenascin-C (TnC), an extracellular matrix component involved in wound healing and remodeling of injured tissues, in mice exposed to ischemic stroke induced by transient intraluminal middle cerebral artery occlusion. In the healthy adult brain, TnC expression is restricted to neurogenic stem cell niches. We previously reported that TnC is upregulated in ischemic brain lesions. We herein show that the de novo expression of TnC post-stroke is closely associated with reactive astrocytes, and that astrocyte reactivity at 14 days post-ischemia is increased in TnC-deficient mice (TnC-/-). By analyzing the three-dimensional morphology of astrocytes in previously ischemic brain tissue, we revealed that TnC-/- reduces astrocytic territorial volume, branching point number, and branch length, which are presumably hallmarks of the homeostatic regulatory astrocyte state, in the post-acute stroke phase after 42 days. Interestingly, TnC-/- moderately increased aggrecan, a neuroplasticity-inhibiting proteoglycan, in the ischemic brain tissue at 42 days post-ischemia. In vitro in astrocyte-microglia cocultures, we showed that TnC-/- reduces the microglial migration speed on astrocytes and elevates intercellular adhesion molecule 1 (ICAM1) expression. Post-stroke, TnC-/- did not alter the ischemic lesion size or neurological recovery, however microglia-associated ICAM1 was upregulated in TnC-/- mice during the first week post stroke. Our data suggest that TnC plays a central role in restraining post-ischemic astrogliosis and regulating astrocyte-microglial interactions.


Assuntos
Gliose , Acidente Vascular Cerebral , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/patologia , Matriz Extracelular/metabolismo , Gliose/genética , Gliose/metabolismo , Inflamação/patologia , Isquemia , Camundongos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Tenascina/genética , Tenascina/metabolismo
18.
Biology (Basel) ; 10(3)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668263

RESUMO

Glaucoma is a neurodegenerative disease that is characterized by the loss of retinal ganglion cells (RGC) and optic nerve fibers. Increased age and intraocular pressure (IOP) elevation are the main risk factors for developing glaucoma. Mice that are heterozygous (HET) for the mega-karyocyte protein tyrosine phosphatase 2 (PTP-Meg2) show chronic and progressive IOP elevation, severe RGCs loss, and optic nerve damage, and represent a valuable model for IOP-dependent primary open-angle glaucoma (POAG). Previously, evidence accumulated suggesting that glaucomatous neurodegeneration is associated with the extensive remodeling of extracellular matrix (ECM) molecules. Unfortunately, little is known about the exact ECM changes in the glaucomatous retina and optic nerve. Hence, the goal of the present study was to comparatively explore ECM alterations in glaucomatous PTP-Meg2 HET and control wild type (WT) mice. Due to their potential relevance in glaucomatous neurodegeneration, we specifically analyzed the expression pattern of the ECM glycoproteins fibronectin, laminin, tenascin-C, and tenascin-R as well as the proteoglycans aggrecan, brevican, and members of the receptor protein tyrosine phosphatase beta/zeta (RPTPß/ζ) family. The analyses were carried out in the retina and optic nerve of glaucomatous PTP-Meg2 HET and WT mice using quantitative real-time PCR (RT-qPCR), immunohistochemistry, and Western blot. Interestingly, we observed increased fibronectin and laminin levels in the glaucomatous HET retina and optic nerve compared to the WT group. RT-qPCR analyses of the laminins α4, ß2 and γ3 showed an altered isoform-specific regulation in the HET retina and optic nerve. In addition, an upregulation of tenascin-C and its interaction partner RPTPß/ζ/phosphacan was found in glaucomatous tissue. However, comparable protein and mRNA levels for tenascin-R as well as aggrecan and brevican were observed in both groups. Overall, our study showed a remodeling of various ECM components in the glaucomatous retina and optic nerve of PTP-Meg2 HET mice. This dysregulation could be responsible for pathological processes such as neovascularization, inflammation, and reactive gliosis in glaucomatous neurodegeneration.

19.
Front Neurosci ; 15: 642176, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093110

RESUMO

Retinal ischemia is a common pathomechanism in various eye diseases. Recently, evidence accumulated suggesting that the extracellular matrix (ECM) glycoprotein tenascin-C (Tnc) plays a key role in ischemic degeneration. However, the possible functional role of Tnc in retinal ischemia is not yet known. The aim of our study was to explore retinal function and rod-bipolar/photoreceptor cell degeneration in wild type (WT) and Tnc knock-out (KO) mice after ischemia/reperfusion (I/R) injury. Therefore, I/R was induced by increasing intraocular pressure in the right eye of wild type (WT I/R) and Tnc KO (KO I/R) mice. The left eye served as untreated control (WT CO and KO CO). Scotopic electroretinogram (ERG) recordings were performed to examine rod-bipolar and rod-photoreceptor cell function. Changes of Tnc, rod-bipolar cells, photoreceptors, retinal structure and apoptotic and synaptic alterations were analyzed by immunohistochemistry, Hematoxylin and Eosin staining, Western blot, and quantitative real time PCR. We found increased Tnc protein levels 3 days after ischemia, while Tnc immunoreactivity decreased after 7 days. Tnc mRNA expression was comparable in the ischemic retina. ERG measurements after 7 days showed lower a-/b-wave amplitudes in both ischemic groups. Nevertheless, the amplitudes in the KO I/R group were higher than in the WT I/R group. We observed retinal thinning in WT I/R mice after 3 and 7 days. Although compared to the KO CO group, retinal thinning was not observed in the KO I/R group until 7 days. The number of PKCα+ rod-bipolar cells, recoverin+ photoreceptor staining and Prkca and Rcvrn expression were comparable in all groups. However, reduced rhodopsin protein as well as Rho and Gnat1 mRNA expression levels of rod-photoreceptors were found in the WT I/R, but not in the KO I/R retina. Additionally, a lower number of activated caspase 3+ cells was observed in the KO I/R group. Finally, both ischemic groups displayed enhanced vesicular glutamate transporter 1 (vGlut1) levels. Collectively, KO mice showed diminished rod-photoreceptor degeneration and retinal dysfunction after I/R. Elevated vGlut1 levels after ischemia could be related to an impaired glutamatergic photoreceptor-bipolar cell signaling and excitotoxicity. Our study provides novel evidence that Tnc reinforces ischemic retinal degeneration, possibly by synaptic remodeling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA