Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta Proteins Proteom ; 1865(8): 1046-1056, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28499769

RESUMO

The genome of the yeast Saccharomyces cerevisiae encodes four flavodoxin-like proteins, namely Lot6p, Pst2p, Rfs1p and Ycp4p. Thus far only Lot6p was characterized in detail demonstrating that the enzyme possesses NAD(P)H:quinone oxidoreductase activity. In the present study, we heterologously expressed PST2 in Escherichia coli and purified the produced protein to conduct a detailed biochemical and structural characterization. Determination of the three-dimensional structure by X-ray crystallography revealed that Pst2p adopts the flavodoxin-like fold and forms tetramers independent of cofactor binding. The lack of electron density for FMN indicated weak binding, which was confirmed by further biochemical analysis yielding a dissociation constant of 20±1µM. The redox potential of FMN bound to Pst2p was determined to -89±3mV and is thus 119mV more positive than that of free FMN indicating that reduced FMN binds ca. five orders of magnitude tighter to Pst2p than oxidized FMN. Due to this rather positive redox potential Pst2p is unable to reduce free FMN or azo dyes as reported for other members of the flavodoxin-like protein family. On the other hand, Pst2p efficiently catalyzes the NAD(P)H dependent two-electron reduction of natural and artificial quinones. The kinetic mechanism follows a ping-pong bi-bi reaction scheme. In vivo experiments with a PST2 knock out and overexpressing strain demonstrated that Pst2p enables yeast cells to cope with quinone-induced damage suggesting a role of the enzyme in managing oxidative stress.


Assuntos
Benzoquinonas/metabolismo , FMN Redutase/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , NADP/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cristalografia por Raios X/métodos , Escherichia coli/metabolismo , FMN Redutase/química , Mononucleotídeo de Flavina/metabolismo , Flavodoxina/metabolismo , Cinética , Modelos Moleculares , NAD/metabolismo , NAD(P)H Desidrogenase (Quinona)/química , Oxirredução , Proteínas Recombinantes/química , Proteínas de Saccharomyces cerevisiae/química
2.
Sci Rep ; 6: 23787, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27025154

RESUMO

Human dipeptidyl-peptidase III (hDPP III) is a zinc-dependent hydrolase cleaving dipeptides off the N-termini of various bioactive peptides. Thus, the enzyme is likely involved in a number of physiological processes such as nociception and is also implicated in several forms of cancer. We present high-resolution crystal structures of hDPP III in complex with opioid peptides (Met-and Leu-enkephalin, endomorphin-2) as well as with angiotensin-II and the peptide inhibitor IVYPW. These structures confirm the previously reported large conformational change of the enzyme upon ligand binding and show that the structure of the closed conformation is independent of the nature of the bound peptide. The overall peptide-binding mode is also conserved ensuring the correct positioning of the scissile peptide bond with respect to the catalytic zinc ion. The structure of the angiotensin-II complex shows, how longer peptides are accommodated in the binding cleft of hDPP III. Differences in the binding modes allow a distinction between real substrates and inhibitory peptides or "slow" substrates. The latter displace a zinc bound water molecule necessitating the energetically much less favoured anhydride mechanism as opposed to the favoured promoted-water mechanism. The structural data also form the necessary framework for the design of specific hDPP III inhibitors.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/química , Encefalinas/química , Angiotensina II/química , Domínio Catalítico , Cristalografia por Raios X , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Humanos , Ligação de Hidrogênio , Hidrólise , Cinética , Modelos Moleculares , Peptídeos Opioides/química , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA