Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Small ; : e2306732, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38073322

RESUMO

Currently, most reported 2D conjugated metal-organic frameworks (2D c-MOFs) are based on planar polycyclic aromatic hydrocarbons (PAHs) with symmetrical functional groups, limiting the possibility of introducing additional substituents to fine-tune the crystallinity and electrical properties. Herein, a novel class of wavy 2D c-MOFs with highly substituted, core-twisted hexahydroxy-hexa-cata-benzocoronenes (HH-cHBCs) as ligands is reported. By tailoring the substitution of the c-HBC ligands with electron-withdrawing groups (EWGs), such as fluorine, chlorine, and bromine, it is demonstrated that the crystallinity and electrical conductivity at the molecular level can be tuned. The theoretical calculations demonstrate that F-substitution leads to a more reversible coordination bonding between HH-cHBCs and copper metal center, due to smaller atomic size and stronger electron-withdrawing effect. As a result, the achieved F-substituted 2D c-MOF exhibits superior crystallinity, comprising ribbon-like single crystals up to tens of micrometers in length. Moreover, the F-substituted 2D c-MOF displays higher electrical conductivity (two orders of magnitude) and higher charge carrier mobility (almost three times) than the Cl-substituted one. This work provides a new molecular design strategy for the development of wavy 2D c-MOFs and opens a new route for tailoring the coordination reversibility by ligand substitution toward increased crystallinity and superior electric conductivity.

2.
Nature ; 547(7663): 324-327, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28726829

RESUMO

The conservation laws, such as those of charge, energy and momentum, have a central role in physics. In some special cases, classical conservation laws are broken at the quantum level by quantum fluctuations, in which case the theory is said to have quantum anomalies. One of the most prominent examples is the chiral anomaly, which involves massless chiral fermions. These particles have their spin, or internal angular momentum, aligned either parallel or antiparallel with their linear momentum, labelled as left and right chirality, respectively. In three spatial dimensions, the chiral anomaly is the breakdown (as a result of externally applied parallel electric and magnetic fields) of the classical conservation law that dictates that the number of massless fermions of each chirality are separately conserved. The current that measures the difference between left- and right-handed particles is called the axial current and is not conserved at the quantum level. In addition, an underlying curved space-time provides a distinct contribution to a chiral imbalance, an effect known as the mixed axial-gravitational anomaly, but this anomaly has yet to be confirmed experimentally. However, the presence of a mixed gauge-gravitational anomaly has recently been tied to thermoelectrical transport in a magnetic field, even in flat space-time, suggesting that such types of mixed anomaly could be experimentally probed in condensed matter systems known as Weyl semimetals. Here, using a temperature gradient, we observe experimentally a positive magneto-thermoelectric conductance in the Weyl semimetal niobium phosphide (NbP) for collinear temperature gradients and magnetic fields that vanishes in the ultra-quantum limit, when only a single Landau level is occupied. This observation is consistent with the presence of a mixed axial-gravitational anomaly, providing clear evidence for a theoretical concept that has so far eluded experimental detection.

3.
Proc Natl Acad Sci U S A ; 117(49): 31088-31093, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229574

RESUMO

Formation of highly symmetric skeletal elements in demosponges, called spicules, follows a unique biomineralization mechanism in which polycondensation of an inherently disordered amorphous silica is guided by a highly ordered proteinaceous scaffold, the axial filament. The enzymatically active proteins, silicateins, are assembled into a slender hybrid silica/protein crystalline superstructure that directs the morphogenesis of the spicules. Furthermore, silicateins are known to catalyze the formation of a large variety of other technologically relevant organic and inorganic materials. However, despite the biological and biotechnological importance of this macromolecule, its tertiary structure was never determined. Here we report the atomic structure of silicatein and the entire mineral/organic hybrid assembly with a resolution of 2.4 Å. In this work, the serial X-ray crystallography method was successfully adopted to probe the 2-µm-thick filaments in situ, being embedded inside the skeletal elements. In combination with imaging and chemical analysis using high-resolution transmission electron microscopy, we provide detailed information on the enzymatic activity of silicatein, its crystallization, and the emergence of a functional three-dimensional silica/protein superstructure in vivo. Ultimately, we describe a naturally occurring mineral/protein crystalline assembly at atomic resolution.

4.
Nanotechnology ; 32(50)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34544072

RESUMO

To establish high-bandwidth chip-to-chip interconnects in optoelectronic integrated circuits, requires high-performance photon emitters and signal receiving components. Regarding the photodetector, fast device concepts like Schottky junction devices, large carrier mobility materials and shrinking the channel length will enable higher operation speed. However, integrating photodetectors in highly scaled ICs technologies is challenging due to the efficiency-speed trade-off. Here, we report a scalable and CMOS-compatible approach for an ultra-scaled germanium (Ge) based photodetector with tunable polarity. The photodetector is composed of a Ge Schottky barrier field effect transistor with monolithic aluminum (Al) source/drain contacts, offering plasmon assisted and polarization-resolved photodetection. The ultra-scaled Ge photodetector with a channel length of only 200 nm shows high responsivity of aboutR = 424 A W-1and a maximum polarization sensitivity ratio of TM/TE = 11.

5.
Nano Lett ; 19(6): 3854-3862, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31117756

RESUMO

Chains of metallic nanoparticles sustain strongly confined surface plasmons with relatively low dielectric losses. To exploit these properties in applications, such as waveguides, the fabrication of long chains of low disorder and a thorough understanding of the plasmon-mode properties, such as dispersion relations, are indispensable. Here, we use a wrinkled template for directed self-assembly to assemble chains of gold nanoparticles. With this up-scalable method, chain lengths from two particles (140 nm) to 20 particles (1500 nm) and beyond can be fabricated. Electron energy-loss spectroscopy supported by boundary element simulations, finite-difference time-domain, and a simplified dipole coupling model reveal the evolution of a band of plasmonic waveguide modes from degenerated single-particle modes in detail. In striking difference from plasmonic rod-like structures, the plasmon band is confined in excitation energy, which allows light manipulations below the diffraction limit. The non-degenerated surface plasmon modes show suppressed radiative losses for efficient energy propagation over a distance of 1500 nm.

6.
Angew Chem Int Ed Engl ; 59(15): 6028-6036, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-31943664

RESUMO

Single-layer and multi-layer 2D polyimine films have been achieved through interfacial synthesis methods. However, it remains a great challenge to achieve the maximum degree of crystallinity in the 2D polyimines, which largely limits the long-range transport properties. Here we employ a surfactant-monolayer-assisted interfacial synthesis (SMAIS) method for the successful preparation of porphyrin and triazine containing polyimine-based 2D polymer (PI-2DP) films with square and hexagonal lattices, respectively. The synthetic PI-2DP films are featured with polycrystalline multilayers with tunable thickness from 6 to 200 nm and large crystalline domains (100-150 nm in size). Intrigued by high crystallinity and the presence of electroactive porphyrin moieties, the optoelectronic properties of PI-2DP are investigated by time-resolved terahertz spectroscopy. Typically, the porphyrin-based PI-2DP 1 film exhibits a p-type semiconductor behavior with a band gap of 1.38 eV and hole mobility as high as 0.01 cm2 V-1 s-1 , superior to the previously reported polyimine based materials.

7.
Inorg Chem ; 58(10): 6659-6668, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31045349

RESUMO

Fine-tuning chemistry by doping with transition metals enables new perspectives for exploring Kitaev physics on a two-dimensional (2D) honeycomb lattice of α-RuCl3, which is promising in the field of quantum information protection and quantum computation. The key parameters to vary by doping are both Heisenberg and Kitaev components of the nearest-neighbor exchange interaction between the Jeff = 1/2 Ru3+ spins, depending strongly on the peculiarities of the crystal structure. Here, we present crystal growth by chemical vapor transport and structure elucidation of a solid solution series Ru1- xCr xCl3 (0 ≤ x ≤ 1), with Cr3+ ions coupled to the Ru3+ Kitaev host. The Cr3+ substitution preserves the honeycomb type lattice of α-RuCl3 and creates mixed occupancy of Ru/Cr sites without cationic order within the layers as confirmed by single-crystal X-ray diffraction and transmission electron microscopy investigations. In contrast to high-quality single crystals of α-RuCl3 with ABAB-stacked layers, the ternary compounds demonstrate a significant stacking disorder along the c-axis direction as evidenced by X-ray diffraction and high resolution scanning transmission electron microscopy (HR-STEM). Raman spectra of substituted samples are in line with the symmetry conservation of the parent lattice upon chromium doping. At the same time, our magnetic susceptibility data indicate that the Kitaev physics of α-RuCl3 is increasingly suppressed by the dominant spin-only driven magnetism of Cr3+ ( S = 3/2) in Ru1- xCr xCl3.

8.
Inorg Chem ; 57(5): 2752-2765, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29446630

RESUMO

Recently simulation groups have reported the lanthanide series elements as the dopants that have the strongest effect on the stabilization of the ferroelectric non-centrosymmetric orthorhombic phase in hafnium oxide. This finding confirms experimental results for lanthanum and gadolinium showing the highest remanent polarization values of all hafnia-based ferroelectric films until now. However, no comprehensive overview that links structural properties to the electrical performance of the films in detail is available for lanthanide-doped hafnia. La:HfO2 appears to be a material with a broad window of process parameters, and accordingly, by optimization of the La content in the layer, it is possible to improve the performance of the material significantly. Variations of the La concentration leads to changes in the crystallographic structure in the bulk of the films and at the interfaces to the electrode materials, which impacts the spontaneous polarization, internal bias fields, and with this the field cycling behavior of the capacitor structure. Characterization results are compared to other dopants like Si, Al, and Gd to validate the advantages of the material in applications such as semiconductor memory devices.

9.
Angew Chem Int Ed Engl ; 57(11): 2963-2966, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29266640

RESUMO

The development of core-shell structures remains a fundamental challenge for pure metallic aerogels. Here we report the synthesis of Pdx Au-Pt core-shell aerogels composed of an ultrathin Pt shell and a composition-tunable Pdx Au alloy core. The universality of this strategy ensures the extension of core compositions to Pd transition-metal alloys. The core-shell aerogels exhibited largely improved Pt utilization efficiencies for the oxygen reduction reaction and their activities show a volcano-type relationship as a function of the lattice parameter of the core substrate. The maximum mass and specific activities are 5.25 A mgPt-1 and 2.53 mA cm-2 , which are 18.7 and 4.1 times higher than those of Pt/C, respectively, demonstrating the superiority of the core-shell metallic aerogels. The proposed core-based activity descriptor provides a new possible strategy for the design of future core-shell electrocatalysts.

10.
Nanotechnology ; 28(39): 395301, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28837051

RESUMO

Area selectivity is an emerging sub-topic in the field of atomic layer deposition (ALD), which employs opposite nucleation phenomena to distinct heterogeneous starting materials on a surface. In this paper, we intend to grow Ru exclusively on locally pre-defined Pt patterns, while keeping a SiO2 substratum free from any deposition. In a first step, we study in detail the Ru ALD nucleation on SiO2 and clarify the impact of the set-point temperature. An initial incubation period with actually no growth was revealed before a formation of minor, isolated RuO x islands; clearly no continuous Ru layer formed on SiO2. A lower temperature was beneficial in facilitating a longer incubation and consequently a wider window for (inherent) selectivity. In a second step, we write C-rich Pt micro-patterns on SiO2 by focused electron-beam-induced deposition (FEBID), varying the number of FEBID scans at two electron beam acceleration voltages. Subsequently, the localized Pt(C) deposits are pre-cleaned in O2 and overgrown by Ru ALD. Already sub-nanometer-thin Pt(C) patterns, which were supposedly purified into some form of Pt(O x ), acted as very effective activation for the locally restricted, thus area-selective ALD growth of a pure, continuous Ru covering, whereas the SiO2 substratum sufficiently inhibited towards no growth. FEBID at lower electron energy reduced unwanted stray deposition and achieved well-resolved pattern features. We access the nucleation phenomena by utilizing a hybrid metrology approach, which uniquely combines in-situ real-time spectroscopic ellipsometry, in-vacuo x-ray photoelectron spectroscopy, ex-situ high-resolution scanning electron microscopy, and mapping energy-dispersive x-ray spectroscopy.

11.
Nanotechnology ; 28(6): 065709, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28067207

RESUMO

Segmented magnetic nanowires are a promising route for the development of three dimensional data storage techniques. Such devices require a control of the coercive field and the coupling mechanisms between individual magnetic elements. In our study, we investigate electrodeposited nanomagnets within host templates using vibrating sample magnetometry and observe a strong dependence between nanowire length and coercive field (25 nm-5 µm) and diameter (25-45 nm). A transition from a magnetization reversal through coherent rotation to domain wall propagation is observed at an aspect ratio of approximately 2. Our results are further reinforced via micromagnetic simulations and angle dependent hysteresis loops. The found behavior is exploited to create nanowires consisting of a fixed and a free segment in a spin-valve like structure. The wires are released from the membrane and electrically contacted, displaying a giant magnetoresistance effect that is attributed to individual switching of the coupled nanomagnets. We develop a simple analytical model to describe the observed switching phenomena and to predict stable and unstable regimes in coupled nanomagnets of certain geometries.

12.
Angew Chem Int Ed Engl ; 55(23): 6702-7, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27100374

RESUMO

To achieve sustainable production of H2 fuel through water splitting, low-cost electrocatalysts for the hydrogen-evolution reaction (HER) and the oxygen-evolution reaction (OER) are required to replace Pt and IrO2 catalysts. Herein, for the first time, we present the interface engineering of novel MoS2 /Ni3 S2 heterostructures, in which abundant interfaces are formed. For OER, such MoS2 /Ni3 S2 heterostructures show an extremely low overpotential of ca. 218 mV at 10 mA cm(-2) , which is superior to that of the state-of-the-art OER electrocatalysts. Using MoS2 /Ni3 S2 heterostructures as bifunctional electrocatalysts, an alkali electrolyzer delivers a current density of 10 mA cm(-2) at a very low cell voltage of ca. 1.56 V. In combination with DFT calculations, this study demonstrates that the constructed interfaces synergistically favor the chemisorption of hydrogen and oxygen-containing intermediates, thus accelerating the overall electrochemical water splitting.

13.
Nano Lett ; 14(4): 1776-84, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24588256

RESUMO

A systematic structural analysis of FePt, CuAu, and Au icosahedral nanoparticles is presented. The uncovered particles are prepared by inert gas condensation and thermally equilibrated through in-flight optical annealing. Aberration-corrected high-resolution transmission electron microscopy reveals that the crystal lattice is significantly expanded near the particle surface. These experimental findings are corroborated by molecular statics simulations that show that this near-surface strain originates from both intrinsic strain due to the icosahedral structure and a partial segregation of the larger of the two alloy constituents to the particle surface.

14.
Phys Chem Chem Phys ; 16(44): 24437-42, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25307877

RESUMO

Materials drastically alter their electronic properties when being reduced to the nanoscale due to quantum effects. Concerning semiconductors, the band gap is expected to broaden as a result of the quantum confinement. In this study we report on the successful synthesis of wide bandgap SiC nanowires (with great potential for applications) and the local determination of their band gap. Their value was found to be higher with respect to bulk SiC. The nanowires are grown as a heterostructure, i.e. encapsulated in carbon nanofibres via dc hot-filament Plasma-Enhanced Chemical Vapour Deposition on the Si/SiO2 substrate. The structure of the as-produced carbon nanofibres was characterized by means of aberration-corrected high-resolution transmission electron microscopy. Two different pure SiC polytypes, namely the 3C (cubic) and the 6H (hexagonal) as well as distorted structures are observed. The SiC nanowires have diameters in the range of 10-15 nm and lengths of several hundred nanometers. The formation of the SiC is a result of the substrate etching during the growth of the CNFs and a subsequent simultaneous diffusion of not only carbon, but also silicon through the catalyst particle.

15.
Microsc Microanal ; 20(4): 1246-53, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24690441

RESUMO

This work presents a systematic study that evaluates the feasibility and reliability of local band gap measurements of Cu(In,Ga)Se2 thin films by valence electron energy-loss spectroscopy (VEELS). The compositional gradients across the Cu(In,Ga)Se2 layer cause variations in the band gap energy, which are experimentally determined using a monochromated scanning transmission electron microscope (STEM). The results reveal the expected band gap variation across the Cu(In,Ga)Se2 layer and therefore confirm the feasibility of local band gap measurements of Cu(In,Ga)Se2 by VEELS. The precision and accuracy of the results are discussed based on the analysis of individual error sources, which leads to the conclusion that the precision of our measurements is most limited by the acquisition reproducibility, if the signal-to-noise ratio of the spectrum is high enough. Furthermore, we simulate the impact of radiation losses on the measured band gap value and propose a thickness-dependent correction. In future work, localized band gap variations will be measured on a more localized length scale to investigate, e.g., the influence of chemical inhomogeneities and dopant accumulations at grain boundaries.


Assuntos
Teste de Materiais/métodos , Semicondutores , Cobre , Gálio , Índio , Selênio , Energia Solar
16.
Small Methods ; 8(3): e2300842, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009770

RESUMO

Conjugated polymers often show efficient charge carrier transport along their backbone which is a primary factor in the electrical behavior of Organic Field Effect Transistor (OFETs) devices fabricated from these materials. Herein, a solution shearing procedure is reported to fabricate micro/nano wires from a diketopyrrolopyrrole (DPP)-based polymer. Millimeter to nanometer long polymer wires orientated in the coating direction are developed after a thorough analysis of the deposition conditions. It shows several morphological regimes-film, transition, and wires and experimentally derive a phase diagram for the parameters coating speed and surface energy of the substrate. The as-fabricated wires are isolated, which is confirmed by optical, atomic force, and scanning electron microscopy. Beside the macroscopic alignment of wires, cross-polarized optical microscopy images show strong birefringence suggesting a high degree of molecular orientation. This is further substantiated by polarized UV-Vis-NIR spectroscopy, selected area electron diffraction transmission electron microscopy, and grazing-incidence wide-angle X-ray scattering. Finally, an enhanced electrical performance of single wire OFETs is observed with a 15-fold increase in effective charge carrier mobility to 1.57 cm2 V-1 s-1 over devices using films (0.1 cm2 V-1 s-1 ) with similar values for on/off current ratio and threshold voltage.

17.
Small ; 9(20): 3415-22, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23606656

RESUMO

ZnO@Zn3 P2 quantum dots (QDs) are synthesized, with emission from yellow to red. Photoelectrochemical investigations reveal that the current and voltage of the QD-derivatized electrodes show a response upon illumination. A photocurrent of ca. 8 nA cm(-2) for a monolayer of ZnO@Zn3 P2 QDs deposited on indium tin oxide (ITO) electrode is recorded.

18.
Sci Rep ; 13(1): 14871, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684274

RESUMO

We report on advanced in-situ magneto-transport measurements in a transmission electron microscope. The approach allows for concurrent magnetic imaging and high resolution structural and chemical characterization of the same sample. Proof-of-principle in-situ Hall measurements on presumably undemanding nickel thin films supported by micromagnetic simulations reveal that in samples with non-trivial structures and/or compositions, detailed knowledge of the latter is indispensable for a thorough understanding and reliable interpretation of the magneto-transport data. The proposed in-situ approach is thus expected to contribute to a better understanding of the Hall signatures in more complex magnetic textures.

19.
Nat Commun ; 14(1): 541, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725862

RESUMO

Integrating plasmonic nanoparticles into the photoactive metal-organic matrix is highly desirable due to the plasmonic near field enhancement, complementary light absorption, and accelerated separation of photogenerated charge carriers at the junction interface. The construction of a well-defined, intimate interface is vital for efficient charge carrier separation, however, it remains a challenge in synthesis. Here we synthesize a junction bearing intimate interface, composed of plasmonic Ag nanoparticles and matrix with silver node via a facile one-step approach. The plasmonic effect of Ag nanoparticles on the matrix is visualized through electron energy loss mapping. Moreover, charge carrier transfer from the plasmonic nanoparticles to the matrix is verified through ultrafast transient absorption spectroscopy and in-situ photoelectron spectroscopy. The system delivers highly efficient visible-light photocatalytic H2 generation, surpassing most reported metal-organic framework-based photocatalytic systems. This work sheds light on effective electronic and energy bridging between plasmonic nanoparticles and organic semiconductors.

20.
Nano Res ; 15(3): 2512-2521, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34493951

RESUMO

We demonstrate the selective detection of hydrogen sulfide at breath concentration levels under humid airflow, using a self-validating 64-channel sensor array based on semiconducting single-walled carbon nanotubes (sc-SWCNTs). The reproducible sensor fabrication process is based on a multiplexed and controlled dielectrophoretic deposition of sc-SWCNTs. The sensing area is functionalized with gold nanoparticles to address the detection at room temperature by exploiting the affinity between gold and sulfur atoms of the gas. Sensing devices functionalized with an optimized distribution of nanoparticles show a sensitivity of 0.122%/part per billion (ppb) and a calculated limit of detection (LOD) of 3 ppb. Beyond the self-validation, our sensors show increased stability and higher response levels compared to some commercially available electrochemical sensors. The cross-sensitivity to breath gases NH3 and NO is addressed demonstrating the high selectivity to H2S. Finally, mathematical models of sensors' electrical characteristics and sensing responses are developed to enhance the differentiation capabilities of the platform to be used in breath analysis applications. Electronic Supplementary Material: Supplementary material (details on the dielectrophoretic deposition, AuNP functionalization optimization, full range of experimental and model H2S sensing response up to 820 ppb, and sensing response to NO gas) is available in the online version of this article at 10.1007/s12274-021-3771-7.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA