Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sheng Li Xue Bao ; 74(5): 697-704, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36319093

RESUMO

Diverse types of GABAergic interneurons tend to specialize in their inhibitory control of various aspects of cortical circuit operations. Among the most distinctive interneuron types, chandelier cells (i.e., axo-axonic cells) are a bona fide cell type that specifically innervates pyramidal cells at the axon initial segment, the site of action potential initiation. Chandelier cells have been speculated to exert ultimate inhibitory control over pyramidal cell spiking. Thus, chandelier cells appear to share multiple similarities with basket cells, not only in firing pattern (fast spiking) and molecular components, but also in potentially perisomatic inhibitory control. Unlike basket cells, however, synaptic recruitment of chandelier cells is little known yet. Here, we examined the mediodorsal thalamocortical input to both chandelier cells and basket cells in medial prefrontal cortex, through combining mouse genetic, optogenetic and electrophysiological approaches. We demonstrated that this thalamocortical input produced initially weak, but facilitated synaptic responses at chandelier cells, which enabled chandelier cells to spike persistently. In contrast, this thalamocortical input evoked initially strong, but rapidly depressed synaptic responses at basket cells, and basket cells only fired at the initiation of input. Overall, the distinct synaptic recruitment dynamics further underscores the differences between chandelier cells and basket cells, suggesting that these two types of fast spiking interneurons play different roles in cortical circuit processing and physiological operation.


Assuntos
Neurônios , Células Piramidais , Camundongos , Animais , Neurônios/fisiologia , Células Piramidais/fisiologia , Interneurônios , Potenciais de Ação/fisiologia , Transmissão Sináptica
2.
Chemosphere ; 119: 224-230, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25016555

RESUMO

In two pot experiments, wild type and a non-mycorrhizal mutant (TR25:3-1) of Medicago truncatula were grown in arsenic (As)-contaminated soil to investigate the influences of arbuscular mycorrhizal fungi (AMF) on As accumulation and speciation in host plants. The results indicated that the plant biomass of M. truncatula was dramatically increased by AM symbiosis. Mycorrhizal colonization significantly increased phosphorus concentrations and decreased As concentrations in plants. Moreover, mycorrhizal colonization generally increased the percentage of arsenite in total As both in shoots and roots, while dimethylarsenic acid (DMA) was only detected in shoots of mycorrhizal plants. The results suggested that AMF are most likely to get involved in the methylating of inorganic As into less toxic organic DMA and also in the reduction of arsenate to arsenite. The study allowed a deeper insight into the As detoxification mechanisms in AM associations. By using the mutant M. truncatula, we demonstrated the importance of AMF in plant As tolerance under natural conditions.


Assuntos
Arsênio/metabolismo , Arsênio/farmacocinética , Medicago truncatula/metabolismo , Micorrizas/fisiologia , Poluentes do Solo/farmacologia , Solo/química , Simbiose , Arsênio/análise , Arsenitos/metabolismo , Biomassa , Oxirredução , Fósforo/análise , Raízes de Plantas/química , Brotos de Planta/química , Poluentes do Solo/análise
3.
Environ Toxicol Chem ; 33(9): 2105-13, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24920536

RESUMO

In a greenhouse pot experiment, dandelion (Taraxacum platypecidum Diels.) and bermudagrass (Cynodon dactylon[Linn.] Pers.), inoculated with and without arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis, were grown in chromium (Cr)-amended soils (0 mg/kg, 5 mg/kg, 10 mg/kg, and 20 mg/kg Cr[VI]) to test whether arbuscular mycorrhizal (AM) symbiosis can improve Cr tolerance in different plant species. The experimental results indicated that the dry weights of both plant species were dramatically increased by AM symbiosis. Mycorrhizal colonization increased plant P concentrations and decreased Cr concentrations and Cr translocation from roots to shoots for dandelion; in contrast, mycorrhizal colonization decreased plant Cr concentrations without improvement of P nutrition in bermudagrass. Chromium speciation analysis revealed that AM symbiosis potentially altered Cr species and bioavailability in the rhizosphere. The study confirmed the protective effects of AMF on host plants under Cr contaminations.


Assuntos
Cromo/metabolismo , Cynodon/efeitos dos fármacos , Micorrizas/efeitos dos fármacos , Micorrizas/fisiologia , Poluentes do Solo/metabolismo , Taraxacum/efeitos dos fármacos , Disponibilidade Biológica , Cromo/análise , Cynodon/microbiologia , Cynodon/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Solo/química , Poluentes do Solo/análise , Simbiose , Taraxacum/microbiologia , Taraxacum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA