Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Med Virol ; 95(10): e29187, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37877809

RESUMO

Chronic infection of hepatitis B virus (HBV) is the major cause of hepatocellular carcinoma (HCC). Notably, 90% of HBV-positive HCC cases exhibit detectable HBV integrations, hinting at the potential early entanglement of these viral integrations in tumorigenesis and their subsequent oncogenic implications. Nevertheless, the precise chronology of integration events during HCC tumorigenesis, alongside their sequential structural patterns, has remained elusive thus far. In this study, we applied whole-genome sequencing to multiple biopsies extracted from six HBV-positive HCC cases. Through this approach, we identified point mutations and viral integrations, offering a blueprint for the intricate tumor phylogeny of these samples. The emergent narrative paints a rich tapestry of diverse evolutionary trajectories characterizing the analyzed tumors. We uncovered oncogenic integration events in some samples that appear to happen before and during the initiation stage of tumor development based on their locations in reconstituted trajectories. Furthermore, we conducted additional long-read sequencing of selected samples and unveiled integration-bridged chromosome rearrangements and tandem repeats of the HBV sequence within integrations. In summary, this study revealed premalignant oncogenic and sequential complex integrations and highlighted the contributions of HBV integrations to HCC development and genome instability.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B/genética , Carcinogênese , Transformação Celular Neoplásica
2.
Small ; 18(36): e2200858, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35411651

RESUMO

Mesenchymal stem cells (MSCs) have a demonstrated value for acute liver failure (ALF) regeneration, while their delivery stratagems with long-term biological functions, low immune response, and high biocompatibility are still a challenge. Here, a lipopolysaccharide (LPS)-loaded photoresponsive cryogel porous microcarrier (CPM) for MSCs delivery and colonization is presented to promote defect liver regeneration. The CPMs are fabricated with graphene oxide, poly(N-isopropylacrylamide), and gelatin methacrylate (GelMA) via droplet microfluidic technology and a gradient-cooling procedure. Benefitting from the biocompatible GelMA component and the porous microstructure of the CPMs, MSCs can be nondestructively captured and abundantly delivered. Because the LPS can be released from the CPMs under NIR irradiation, the delivered MSCs are imparted with the feature of "trained immunity." Thus, when the MSCs-laden CPMs are tailored into the liver matched patches by bioprinting and applied in ALF rats, they display superior anti-inflammatory and more significant liver regeneration properties than the untrained MSCs. These features make the CPMs an excellent MSCs delivery system for clinical applications in tissue repair.


Assuntos
Bioimpressão , Falência Hepática Aguda , Células-Tronco Mesenquimais , Animais , Bioimpressão/métodos , Gelatina/química , Lipopolissacarídeos , Falência Hepática Aguda/terapia , Ratos
3.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 51(6): 697-706, 2022 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-36915981

RESUMO

OBJECTIVE: To investigate the efficacy of a novel artificial perfusate based on oxygen-carrying perfluoronaphthalene-albumin nanoparticles in normothermic machine perfusion (NMP) for preservation of porcine liver donation after cardiac death. METHODS: Artificial perfusate with perfluoronaphthalene-albumin nanoparticles was prepared at 5% albumin (w/v) and its oxygen carrying capacity was calculated. The livers of 16 Landrace pigs were isolated after 1 h of warm ischemia, and then they were divided into 4 groups and preserved continuously for 24 h with different preservation methods: cold preservation with UW solution (SCS group), NMP preservation by whole blood (blood NMP group), NMP preservation by artificial perfusate without nanoparticles (non-nanoparticles NMP group) and NMP preservation by artificial perfusate containing nanoparticles (nanoparticles NMP group). Hemodynamics, tissue metabolism, biochemical indices of perfusate and bile were monitored every 4 h after the beginning of NMP. Liver tissue samples were collected for histological examination (HE and TUNEL staining) before preservation, 12 h and 24 h after preservation. RESULTS: The oxygen carrying capacity of nanoparticles in 100 mL artificial perfusate was 6.94 µL/mmHg (1 mmHg=0.133 kPa). The hepatic artery and portal vein resistance of nanoparticles NMP group and blood NMP group remained stable during perfusion, and the vascular resistance of nanoparticles NMP group was lower than that of blood NMP group. The concentration of lactic acid in the perfusate decreased to the normal range within 8 h in both nanoparticles NMP group and blood NMP group. There were no significant differences in accumulated bile production, alanine aminotransferase and aspartate aminotransferase in perfusate between nanoparticles NMP group and blood NMP group (all P>0.05). After 24 h perfusion, the histological Suzuki score in blood NMP group and nanoparticles NMP group was lower than that in SCS group and non-nanoparticles NMP group (all P<0.05), and the quantities of TUNEL staining positive cells in blood NMP group and non-nanoparticles NMP group was higher than those in nanoparticles NMP group and SCS group 12 h and 24 h after preservation (all P<0.05). CONCLUSION: Artificial perfusate based on oxygen-carrying nanoparticles can meet the oxygen supply requirements of porcine livers donation after cardiac death during NMP preservation, and it may has superiorities in improving tissue microcirculation and alleviating ischemia-reperfusion injury.


Assuntos
Transplante de Fígado , Suínos , Animais , Preservação de Órgãos , Fígado , Perfusão , Morte , Oxigênio/metabolismo
4.
FASEB J ; 33(2): 2514-2525, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30260707

RESUMO

Bone marrow-derived mesenchymal stem cells (MSCs) have been recently used in clinical trials as treatment for liver diseases. However, the underlying mechanism of their effectiveness remains largely unexplored. In the present study, we confirmed that the protective effects of MSCs on mouse model of acute liver failure (ALF) were based on MSC-secreted prostaglandin (PG)E2. Our data confirmed that MSC-secreted PGE2 not only inhibited apoptosis but also enhanced hepatocyte proliferation, thus attenuating ALF. Moreover, Yes-associated protein (YAP) played a major role in PGE2-triggered hepatocyte proliferation. In vitro studies showed that PGE2 increased the expression of PGE4 and enhanced the phosphorylation of cAMP response element binding protein, resulting in YAP activation and increased expression of YAP-related genes. Furthermore, the mammalian target of rapamycin, another major regulator of cell proliferation, was activated by YAP via suppressing phosphatase and tensin homolog through miR-29a-3p. These pathways coordinated to control cell proliferation. Collectively, MSCs could promote the recovery of ALF through PGE2-induced hepatocyte proliferation.-Liu, Y., Ren, H., Wang, J., Yang, F., Li, J., Zhou, Y., Yuan, X., Zhu, W., Shi, X. Prostaglandin E2 secreted by mesenchymal stem cells protects against acute liver failure via enhancing hepatocyte proliferation.


Assuntos
Proliferação de Células , Dinoprostona/metabolismo , Hepatócitos/citologia , Falência Hepática Aguda/prevenção & controle , Células-Tronco Mesenquimais/metabolismo , Substâncias Protetoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose , Proteínas de Ciclo Celular , Células Cultivadas , Hepatócitos/metabolismo , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Sinalização YAP
5.
World J Surg ; 44(11): 3607-3615, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32632643

RESUMO

BACKGROUND: Boot camp can enable residents to acquire surgical skills and confidence, but they can lose these skills over time if they do not use them. The purpose of this study was to explore whether boot camp and subsequent repetitive practice could strengthen residents' clinical skills and self-confidence. METHODS: This is a comparative study of surgical residents who were enrolled in our institution from 2016 to 2017. The residents in the experimental group (enrolled in 2017) received boot camp training and a year of repetitive practice. The control group (enrolled in 2016) only received routine residency training. The rotation assessment pass rates of the two groups during the first year of the residency training were compared. A survey was conducted at different points in time to investigate the influence of boot camp and repetitive practice on the confidence of the residents. RESULTS: The assessment pass rate of the experimental group was significantly higher than that of the control group (p < 0.05). The residents' confidence in themselves improved significantly after the boot camp, and it was comparable to that of the residents in the control group after their first year of residency. The level of self-confidence of the experimental group was further improved after repetitive practice. Finally, residents in the experimental group received better evaluations by their colleagues than the control group received. CONCLUSIONS: This study showed that boot camp can improve the surgical skills and confidence of residents and that repetitive practice can further strengthen them. Residents in the experimental group developed their self-confidence in boot camp, and it increased after repetitive practice.


Assuntos
Competência Clínica , Avaliação Educacional , Cirurgia Geral/educação , Internato e Residência , Adulto , Currículo , Feminino , Humanos , Masculino
6.
Cell Immunol ; 336: 40-47, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30594305

RESUMO

During the process of NAFLD progression, ER-stress is activated in macrophages and induces the pro-inflammatory polarization of macrophage. As one of the three ER membrane resident proteins, pancreatic eIF-2alpha kinase (PERK) plays an important role in ER stress, but its participation in macrophage polarization is largely unknown. In this study, we found that the PA mediated ER-stress activation could induce M1-type polarization in macrophages, and this phenotype polarization could be inhibited by ER-stress inhibitor 4-PBA as well as GSK2656157, an inhibitor of PERK. Moreover, the knockdown of PERK altered the STAT1 and STAT6 pathways in macrophages, which then led to the M1-to-M2 phenotypic shift. In summary, we found that PERK could regulate the phenotypic polarization of macrophages. This finding may provide new insight into the suppression of pathological progression of fatty liver or liver ischemia reperfusion injury induced by M1-type macrophages.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Macrófagos/fisiologia , Pâncreas/enzimologia , eIF-2 Quinase/fisiologia , Animais , Polaridade Celular , Células Cultivadas , Masculino , Camundongos , Ácido Palmítico/farmacologia , Fator de Transcrição STAT6/fisiologia , eIF-2 Quinase/antagonistas & inibidores
8.
Hepatol Res ; 48(3): E194-E202, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28833919

RESUMO

AIM: Recently, the benefit of mesenchymal stem cells (MSCs) as a cell-based therapy for acute liver failure (ALF) has gained much attention, although the mechanism of action of MSCs in the treatment of ALF remains elusive. Pyroptosis is a novel form of programmed cell death with an intense inflammatory response. The aim of the present study was to explore the soluble cytokines secreted by MSCs and their therapeutic effects through inhibiting pyroptosis in ALF. METHODS: Mesenchymal stem cells obtained from C57BL/6 mice were isolated and cultured according to an established protocol. The MSCs were transplanted into mice with D-galactosamine (D-Gal)-induced ALF. Liver function, survival rate, histology, and inflammatory factors were determined. Exogenous recombinant rat interleukin (IL)-10, ShIL-RNA, and MCC950 (NLRP3 inhibitor) were given to the mice to explore the therapeutic mechanism of MSCs. Statistical analyses were carried out with spss version 19.0, and all data were analyzed by independent-samples t-test. RESULTS: Injection of IL-10 or MSC transplantation ameliorated D-Gal-induced increase in alanine aminotransferase, aspartate aminotransferase, total bilirubin, NH3, and inflammatory cytokines. Blockage of IL-10 confirmed the therapeutic significance of this cytokine. CONCLUSION: Pyroptosis was inhibited after IL-10 infusion and inhibition of NLRP3 by MCC950 reversed liver dysfunction.

9.
Hepatobiliary Pancreat Dis Int ; 15(6): 602-611, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27919849

RESUMO

BACKGROUND: Transplantation of mesenchymal stem cells (MSCs) has been regarded as a potential treatment for acute liver failure (ALF), but the optimal route was unknown. The present study aimed to explore the most effective MSCs transplantation route in a swine ALF model. METHODS: The swine ALF model induced by intravenous injection of D-Gal was treated by the transplantation of swine MSCs through four routes including intraportal injection (InP group), hepatic intra-arterial injection (AH group), peripheral intravenous injection (PV group) and intrahepatic injection (IH group). The living conditions and survival time were recorded. Blood samples before and after MSCs transplantation were collected for the analysis of hepatic function. The histology of liver injury was interpreted and scored in terminal samples. Hepatic apoptosis was detected by TUNEL assay. Apoptosis and proliferation related protein expressions including cleaved caspase-3, survivin, AKT, phospho-AKT (Ser473), ERK and phospho-ERK (Tyr204) were analyzed by Western blotting. RESULTS: The average survival time of each group was 10.7+/-1.6 days (InP), 6.0+/-0.9 days (AH), 4.7+/-1.4 days (PV), 4.3+/-0.8 days (IH), respectively, when compared with the average survival time of 3.8+/-0.8 days in the D-Gal group. The survival rates between the InP group and D-Gal group revealed a statistically significant difference (P<0.01). Pathological and biochemical analysis showed that liver damage was the worst in the D-Gal group, while less injury in the InP group. Histopathological scores revealed a significant decrease in the InP group (3.17+/-1.04, P<0.01) and AH group (8.17+/-0.76, P<0.05) as compared with that in the D-Gal group (11.50+/-1.32). The apoptosis rate in the InP group (25.0%+/-3.4%, P<0.01) and AH group (40.5%+/-1.0%, P<0.05) was lower than that in the D-Gal group (70.6%+/-8.5%). The expression of active caspase-3 was inhibited, while the expression of survivin, AKT, phospho-AKT (Ser473), ERK and phospho-ERK (Tyr204) was elevated in the InP group. CONCLUSIONS: Intraportal injection was superior to other pathways for MSC transplantation. Intraportal MSC transplantation could improve liver function, inhibit apoptosis and prolong the survival time of swine with ALF. The transplanted MSCs may participate in liver regeneration via promoting cell proliferation and suppressing apoptosis during the initial stage of ALF.


Assuntos
Apoptose , Proliferação de Células , Doença Hepática Induzida por Substâncias e Drogas/cirurgia , Falência Hepática Aguda/prevenção & controle , Regeneração Hepática , Fígado/patologia , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Western Blotting , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Galactosamina , Fígado/metabolismo , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Testes de Função Hepática , Fenótipo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Suínos , Porco Miniatura , Fatores de Tempo
10.
Artif Organs ; 39(4): 352-60, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25345752

RESUMO

Extrahepatic bile duct (EBD) injury can happen during surgery. To repair a defect of the EBD and prevent postoperative biliary complications, a collagen membrane was designed. The collagen material was porous, biocompatible, and degradable and could maintain its shape in bile soaking for about 4 weeks. The goal was to induce rapid bile duct tissue regeneration. Twenty Chinese experimental hybrid pigs were used in this study and divided into a patch group and a control group. A spindle-shaped defect (20 mm × 6 mm) was made in the anterior wall of the lower EBD in the swine model, and then the defect was reconstructed using a collagen patch with a drainage tube and wrapped with greater omentum. Ultrasound was performed at 2, 4, 8, and 12 weeks postoperatively. Liver function tests and white blood cell count (WBC) were measured. Hematoxylin-eosin staining, cytokeratin 7 immunohistochemical staining, and Van Gieson's staining of EBD were used. The diameter and thickness of the EBD at the graft site were measured. There was no significant difference in liver function tests or WBC in the patch group compared with the control group. No evidence of leakage or stricture was observed, but some pigs developed biliary sludge or stone at 4 and 8 weeks. The drainage tube was lost within 12 weeks. The neo-EBD could withstand normal biliary pressure 2 weeks after surgery. Histological study showed the accessory glands and epithelial cells gradually regenerated at graft sites from 4 weeks, with increasing vessel infiltration and decreasing inflammation. The collagen fibers became regular with full coverage of epithelial cells. The statistical analysis of diameter and thickness showed no stricture formation at the graft site, but the EBD wall was slightly thicker than in the normal bile duct due to collagen fiber deposition. The structure of the neo-EBD was similar to that of the normal EBD. The collagen membrane patch associated with a drainage tube and wrapped with greater omentum effectively induced the regeneration of the EBD defect within 12 weeks.


Assuntos
Ductos Biliares Extra-Hepáticos/cirurgia , Procedimentos Cirúrgicos do Sistema Biliar/instrumentação , Materiais Biocompatíveis , Colágeno , Membranas Artificiais , Procedimentos de Cirurgia Plástica/instrumentação , Regeneração , Animais , Ductos Biliares Extra-Hepáticos/diagnóstico por imagem , Ductos Biliares Extra-Hepáticos/lesões , Ductos Biliares Extra-Hepáticos/patologia , Ductos Biliares Extra-Hepáticos/fisiopatologia , Modelos Animais de Doenças , Desenho de Equipamento , Estudos de Viabilidade , Feminino , Imuno-Histoquímica , Contagem de Leucócitos , Testes de Função Hepática , Masculino , Omento/cirurgia , Complicações Pós-Operatórias/etiologia , Suínos , Fatores de Tempo , Ultrassonografia
11.
Hepatobiliary Pancreat Dis Int ; 14(5): 492-501, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26459725

RESUMO

BACKGROUND: A novel hybrid bioartificial liver (HBAL) was constructed using an anionic resin adsorption column and a multi-layer flat-plate bioreactor containing porcine hepatocytes co-cultured with bone marrow mesenchymal stem cells (MSCs). This study aimed to evaluate the microbiological safety of the HBAL by detecting the transmission of porcine endogenous retroviruses (PERVs) into canines with acute liver failure (ALF) undergoing HBAL. METHODS: Eight dogs with ALF received a 6-hour HBAL treatment on the first day after the modeling by D-galactosamine administration. The plasma in the HBAL and the whole blood in the dogs were collected for PERV detection at regular intervals until one year later when the dogs were sacrificed to retrieve the tissues of several organs for immunohistochemistry and Western blotting for the investigation of PERV capsid protein gag p30 in the tissue. Furthermore, HEK293 cells were incubated to determine the in vitro infectivity. RESULTS: PERV RNA and reverse transcriptase activity were observed in the plasma of circuit 3, suggesting that PERV particles released in circuit 3. No positive PERV RNA and reverse transcriptase activity were detected in other plasma. No HEK293 cells were infected by the plasma in vitro. In addition, all PERV-related analyses in peripheral blood mononuclear cells and tissues were negative. CONCLUSION: No transmission of PERVs into ALF canines suggested a reliable microbiological safety of HBAL based on porcine hepatocytes.


Assuntos
Proteínas do Capsídeo/metabolismo , Retrovirus Endógenos/isolamento & purificação , Hepatócitos/virologia , Falência Hepática Aguda/terapia , Fígado Artificial/virologia , RNA Viral/análise , Proteínas dos Retroviridae/metabolismo , Proteínas do Envelope Viral/metabolismo , Animais , Modelos Animais de Doenças , Cães , Células HEK293/virologia , Humanos , Falência Hepática Aguda/sangue , Falência Hepática Aguda/metabolismo , DNA Polimerase Dirigida por RNA/análise , Suínos , Viroses/transmissão
12.
Sci Bull (Beijing) ; 69(2): 248-279, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38101962

RESUMO

Stem cell therapy holds immense potential as a viable treatment for a widespread range of intractable disorders. As the safety of stem cell transplantation having been demonstrated in numerous clinical trials, various kinds of stem cells are currently utilized in medical applications. Despite the achievements, the therapeutic benefits of stem cells for diseases are limited, and the data of clinical researches are unstable. To optimize tthe effectiveness of stem cells, engineering approaches have been developed to enhance their inherent abilities and impart them with new functionalities, paving the way for the next generation of stem cell therapies. This review offers a detailed analysis of engineered stem cells, including their clinical applications and potential for future development. We begin by briefly introducing the recent advances in the production of stem cells (induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs)). Furthermore, we present the latest developments of engineered strategies in stem cells, including engineered methods in molecular biology and biomaterial fields, and their application in biomedical research. Finally, we summarize the current obstacles and suggest future prospects for engineered stem cells in clinical translations and biomedical applications.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes Induzidas , Células-Tronco Hematopoéticas , Transplante de Células-Tronco , Materiais Biocompatíveis
13.
Biosens Bioelectron ; 255: 116270, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588628

RESUMO

Hepatocellular carcinoma (HCC), as one of the most lethal cancers, significantly impacts human health. Attempts in this area tends to develop novel technologies with sensitive and multiplexed detection properties for early diagnosis. Here, we present novel hydrogel photonic crystal (PhC) barcodes with tyramine deposition amplified enzyme-linked immunosorbent assay (ELISA) for highly sensitive and multiplexed HCC biomarker screening. Because of the abundant amino groups of acrylic acid (AA) component, the constructed hydrogel PhC barcodes with inverse opal structure could facilitate the loading of antibody probes for subsequent detection of tumor markers. By integrating tyramine deposition amplified ELISA on the barcode, the detection signal of tumor markers has been enhanced. Based on these features, it is demonstrated that the hydrogel PhC barcodes with tyramine deposition amplified ELISA could realize highly sensitive and multiplexed detection of HCC-related biomarkers. It was found that this method is flexible, sensitive and accurate, suitable for multivariate analysis of low abundance tumor markers and future cancer diagnosis. These features make the newly developed PhC barcodes an innovation platform, which possesses tremendous potential for practical application of low abundance targets.


Assuntos
Técnicas Biossensoriais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Hidrogéis/química , Carcinoma Hepatocelular/diagnóstico , Técnicas Biossensoriais/métodos , Neoplasias Hepáticas/diagnóstico , Biomarcadores Tumorais , Ensaio de Imunoadsorção Enzimática , Tiramina
14.
Artigo em Inglês | MEDLINE | ID: mdl-38594624

RESUMO

Hydrogel microcarrier-based drug delivery systems are of great value in the combination therapy of tumors. Current research directions concentrate on the development of more economic, convenient, and effective combined therapeutic platforms. Herein, we developed novel adhesive composite microparticles (MPPMD) with combined chemo- and photothermal therapy ability via microfluidic electrospray technology for local hepatocellular carcinoma treatment. These composite microparticles consisted of doxorubicin (DOX)-loaded and polydopamine-wrapped mesoporous silicon and alginate. Benefiting from such a strategy of hierarchical structure drug loading, DOX could be gradually released from the system, effectively avoiding the direct toxicity of chemotherapeutics to the body. Additionally, the designed microparticles could not only effectively treat tumors by releasing the chemotherapy drug DOX but also show excellent photothermal properties under the irradiation of near-infrared light, achieving combined chemo- and photothermal treatment effects. Based on these advantages, the MPPMD could remarkably eliminate tumor cells in vitro and enormously restrict tumor development in vivo. These results illustrate that such composite microparticles are ideal combination treatment platforms, possessing promising expectations for cancer therapy.

15.
Cell Death Discov ; 10(1): 37, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242891

RESUMO

Currently, there is still a lack of novel and effective drug targets to improve the prognosis of hepatocellular carcinoma (HCC). Additionally, the role of CHEK2 in HCC has not been reported yet. The eQTLgen database and two HCC Genome-Wide Association Study (GWAS) datasets (ieu-b-4953, ICD10 C22.0) were used to find the drug target: CHEK2. Next, Colony, Edu, ß-gal, and cell cycle analysis were facilitated to evaluate the role of CHEK2 knockout in HCC. In addition, Nultin-3 was added to evaluate the apoptosis of TP53-mutated HCC cells with CHEK2 knockout. Furthermore, MitoSox, electron microscopy, mitochondrial ATP, and NADH+/NADH levels were assessed in the CHEK2 knockout HCC cells with or without Metformin. Finally, cell-derived tumor xenograft was used to evaluate the role of CHEK2 knockout in vivo. We initially identified a potential drug target, CHEK2, through GWAS data analysis. Furthermore, we observed a significant upregulation of CHEK2 expression in HCC, which was found to be correlated with a poor prognosis. Subsequently, the results indicated that knocking out CHEK2 selectively affects the proliferation, cell cycle, senescence, and apoptosis of TP53-mutant HCC cells. Additionally, the introduction of Nultin-3 further intensified the functional impact on TP53-mutant cells. Then ClusterProfiler results showed high CHEK2 and TP53 mutation group was positively enriched in the mitochondrial ATP pathway. Then we used MitoSox, electron microscopy, mitochondrial ATP, and NADH + /NADH assay and found knockout of CHECK could induce the ATP pathway to inhibit the growth of HCC. Our research introduces a novel drug target for TP53-mutant HCC cells via mitochondrial ATP, addressing the limitation of Nultin-3 as a standalone treatment that does not induce tumor cell death.

16.
Int J Biol Macromol ; : 134369, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098678

RESUMO

Hepatocellular carcinoma (HCC), ranking as the fourth most prevalent cancer globally, has garnered significant attention due to its high invasiveness and mortality rates. However, drug therapies face challenges of inadequate efficacy and unclear mechanisms. Here, we propose a novel biohybrid hydrogel that targets ß-Klotho (KLB) for HCC treatment. As a dual-network hydrogel, this gel combines gelatin methacryloyl (GelMA) and polyvinyl alcohol (PVA) to ensure biocompatibility while enhancing controlled drug release. Notably, it exhibits good storage stability, high drug load capacity, and efficient water absorption. By introducing the HDAC3 inhibitor RGFP966, we can selectively inhibit the activation of ß-Klotho. This deactivation effectively blocks the FGF21-KLB signaling pathway and inhibits the progression of HCC. Importantly, we have successfully validated this unique phenomenon both in vivo and in vitro, providing substantial evidence for the efficacy of this hydrogel-based anti-tumor drug delivery system as a promising strategy for HCC treatment. This innovative research outcome brings new hope to the field of tumor therapy, providing a reliable theoretical foundation for future clinical applications.

17.
Int J Biol Macromol ; 268(Pt 1): 131732, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649078

RESUMO

Drug delivery systems based on hydrogel microcarriers have shown enormous achievements in tumor treatment. Current research direction mainly concentrated on the improvement of the structure and function of the microcarriers to effectively deliver drugs for enhanced cancer treatment with decreased general toxicity. Herein, we put forward novel hierarchical mesoporous silicon nanoparticles (MSNs) and bovine serum albumin (BSA) composite microparticles (MPMSNs@DOX/FU) delivering doxorubicin (DOX) and 5-fluorouracil (FU) for effective tumor therapy with good safety. The DOX and FU could be efficiently loaded in the MSNs, which were further encapsulated into methacrylate BSA (BSAMA) microparticles by applying a microfluidic technique. When transported to the tumor area, DOX and FU will be persistently released from the MPMSNs@DOX/FU and kept locally to lessen general toxicity. Based on these advantages, MPMSNs@DOX/FU could observably kill liver cancer cells in vitro, and evidently suppress the tumor development of liver cancer nude mice model in vivo. These results suggest that such hierarchical hydrogel microparticles are perfect candidates for liver cancer treatment, holding promising expectations for impactful cancer therapy.


Assuntos
Doxorrubicina , Portadores de Fármacos , Fluoruracila , Neoplasias Hepáticas , Soroalbumina Bovina , Silício , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Animais , Fluoruracila/farmacologia , Fluoruracila/química , Fluoruracila/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Silício/química , Humanos , Camundongos , Soroalbumina Bovina/química , Porosidade , Portadores de Fármacos/química , Ensaios Antitumorais Modelo de Xenoenxerto , Sistemas de Liberação de Medicamentos , Camundongos Nus , Nanopartículas/química , Liberação Controlada de Fármacos , Linhagem Celular Tumoral , Microesferas , Células Hep G2
18.
Clin Transl Sci ; 17(8): e13910, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39143889

RESUMO

Ferroptosis is a novel, iron-dependent regulatory cell death mainly caused by an imbalance between the production and degradation of intracellular reactive oxygen species (ROS). Recently, ferroptosis induction has been considered a potential therapeutic approach for hepatocellular carcinoma (HCC). Fibroblast growth factor 21 (FGF21) is a new modulator of ferroptosis; however, the regulatory role of FGF21 in HCC ferroptosis has not been investigated. In this study, we explored the role of FGF21 and its underlying molecular mechanism in the ferroptotic death of HCC cells. We identified Major vault protein (MVP) as a target of FGF21 and revealed that knockdown of MVP inhibited the lipid peroxidation levels of HCC cells by decreasing NADPH oxidase 4 (NOX4, a major source of ROS) transcription, thereby attenuating the effect of FGF21-mediated ferroptosis. On the other hand, MVP overexpression showed the opposite results. Mechanistically, MVP binds to IRF1 and thus interferes with the interaction between IRF1 and the YAP1 promoter, leading to an increase in NOX4 transcription. Importantly, forced expression of IRF1 or downregulation of YAP1 partially reversed the effect of MVP overexpression on HCC ferroptosis. Furthermore, the results in xenograft tumor models suggested that overexpression of MVP can efficiently increase the level of lipid peroxidation in vivo. Taken together, these results provide new insights into the regulatory mechanism of ferroptosis in HCC.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Peroxidação de Lipídeos , Neoplasias Hepáticas , NADPH Oxidase 4 , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Humanos , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Animais , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Espécies Reativas de Oxigênio/metabolismo , Masculino
19.
Liver Int ; 33(3): 448-58, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23301992

RESUMO

AIM: Hepatic tissue engineering is considered as a possible alternative to liver transplantation for end-stage liver disease. Several methods of decellularization of xenogeneic liver are available to produce three-dimensional organ scaffolds for engineering liver tissues. However, rare studies have examined and compared the effectiveness of different methods on the structure and composition of intact decellularized liver extracellular matrix. METHODS: Two decellularization methods were adopted herein. Their effects on collagen, elastin, glycosaminoglycans (GAGs), hepatocyte growth factor (HGF) content and influence to the function of hepatocytes cultured in scaffolds were examined and compared. RESULTS: The complete tissue decellularization was successfully achieved after treatment with sodium dodecyl sulphate (SDS) and Triton X-100. The total absence of nuclear structures and removal of viable cells were confirmed by haematoxylin-eosin staining and scanning electron microscopy. Collagen was preserved after both treatments. However, the elastin content decreased to about 20% and 60%, the GAGs content decreased to about 10% and 50% and the HGF content decreased to about 20% and 60% of the native liver level after SDS and Triton X-100 treatment respectively. The Triton X-100-treated scaffolds were much superior than SDS-treated scaffolds in supporting liver-specific function, including albumin secretion (P = 0.001), urea synthesis (P = 0.002), ammonia elimination (P = 0.007) and mRNA expression levels of drug metabolism enzymes. CONCLUSION: This study suggested that liver extracellular matrix scaffolds constructed using perfusion of Triton X-100 as described herein might provide a more effective and ideal material for the usage in tissue engineering and regenerative medicine approaches.


Assuntos
Doença Hepática Terminal/terapia , Matriz Extracelular/fisiologia , Fígado/citologia , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Colágeno/metabolismo , Elastina/metabolismo , Glicosaminoglicanos/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Hepatócitos/metabolismo , Octoxinol , Ratos , Dodecilsulfato de Sódio
20.
Stem Cell Res Ther ; 14(1): 359, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087318

RESUMO

Hepatic osteodystrophy (HOD) is a metabolically associated bone disease mainly manifested as osteoporosis with the characteristic of bone loss induced by chronic liver disease (CLD). Due to its high incidence in CLD patients and increased risk of fracture, the research on HOD has received considerable interest. The specific pathogenesis of HOD has not been fully revealed. While it is widely believed that disturbance of hormone level, abnormal secretion of cytokines and damage of intestinal barrier caused by CLD might jointly affect the bone metabolic balance of bone formation and bone absorption. At present, the treatment of HOD is mainly to alleviate the bone loss by drug treatment, but the efficacy and safety are not satisfactory. Mesenchymal stromal cells (MSCs) are cells with multidirectional differentiation potential, cell transplantation therapy based on MSCs is an emerging therapeutic approach. This review mainly summarized the pathogenesis and treatment of HOD, reviewed the research progress of MSCs therapy and the combination of MSCs and scaffolds in the application of osteoporotic bone defects, and discussed the potential and limitations of MSCs therapy, providing theoretical basis for subsequent studies.


Assuntos
Doenças Ósseas Metabólicas , Hepatopatias , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Osteoporose , Humanos , Doenças Ósseas Metabólicas/metabolismo , Osteoporose/terapia , Osso e Ossos/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Transplante de Células-Tronco Mesenquimais/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA