Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Plant Cell Rep ; 43(4): 94, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472660

RESUMO

KEY MESSAGE: Taxadiene synthase, taxadiene-5α-hydroxylase, and taxane 13α-hydroxylase genes were introduced into Nicotiana benthamiana, and the improved resistance to lepidoptera pest fall armyworm was reported. Fall armyworm (FAW) is a serious agricultural pest. Genetic engineering techniques have been used to create pest-resistant plant varieties for reducing pest damage. Paclitaxel is a diterpenoid natural metabolite with antineoplastic effects in medicine. However, the effects of taxanes on the growth and development of lepidoptera pests, such as the FAW, are unknown. Here, selected paclitaxel precursor biosynthesis pathway genes, taxadiene synthase, taxane 5α-hydroxylase, and taxane 13α-hydroxylase, were engineered in the heterologous host Nicotiana benthamiana plants. Bioassay experiments showed that the transgenic N. benthamiana plants displayed improved resistance to FAW infestation, with degeneration of gut tissues and induced expression of apoptosis-related genes. Cytotoxicity experiment showed that the paclitaxel precursor, 10-deacetylbaccatin III, is cytotoxic to Sf9 cells, causing cell cycle arrest at the G2/M phase and disorder of the cytoskeleton. Metabolome analysis showed that heterologous expression of taxane genes in N. benthamiana affected the digestive system, steroid hormone and purine metabolism pathways of FAW larvae. In summary, this study provides a candidate approach for FAW control.


Assuntos
Hidrocarbonetos Aromáticos com Pontes , Nicotiana , Taxoides , Animais , Spodoptera , Taxoides/metabolismo , Taxoides/farmacologia , Paclitaxel/farmacologia , Plantas Geneticamente Modificadas/metabolismo , Larva
2.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256227

RESUMO

Dramatic shifts in global climate have intensified abiotic and biotic stress faced by plants. Plant microRNAs (miRNAs)-20-24 nucleotide non-coding RNA molecules-form a key regulatory system of plant gene expression; playing crucial roles in plant growth; development; and defense against abiotic and biotic stress. Moreover, they participate in cross-kingdom communication. This communication encompasses interactions with other plants, microorganisms, and insect species, collectively exerting a profound influence on the agronomic traits of crops. This article comprehensively reviews the biosynthesis of plant miRNAs and explores their impact on plant growth, development, and stress resistance through endogenous, non-transboundary mechanisms. Furthermore, this review delves into the cross-kingdom regulatory effects of plant miRNAs on plants, microorganisms, and pests. It proceeds to specifically discuss the design and modification strategies for artificial miRNAs (amiRNAs), as well as the protection and transport of miRNAs by exosome-like nanovesicles (ELNVs), expanding the potential applications of plant miRNAs in crop breeding. Finally, the current limitations associated with harnessing plant miRNAs are addressed, and the utilization of synthetic biology is proposed to facilitate the heterologous expression and large-scale production of miRNAs. This novel approach suggests a plant-based solution to address future biosafety concerns in agriculture.


Assuntos
MicroRNAs , Melhoramento Vegetal , Produtos Agrícolas , Agricultura , Clima , MicroRNAs/genética
3.
Plant Dis ; 107(5): 1609-1612, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36428256

RESUMO

Streptomyces angustmyceticus CQUSa03 was recently isolated from the rhizosphere soil of a potato resistant variety, which showed strong biocontrol activity against potato late blight and other fungal diseases. To elucidate the biocontrol mechanism, the whole genome of CQUSa03 was sequenced using second-generation Illumina and third-generation Nanopore sequencing technologies. The assembled genome of CQUSa03 was 8,107,672 bp, containing one chromosome and three plasmids, with an average GC content of 72.29%, 6,914 protein-coding genes, 21 rRNA, and 68 tRNA. In addition, 29 important secondary metabolite biosynthetic gene clusters were identified in the CQUSa03 genome. The related genes of ß-1,3-glucanase and chitinase, which can degrade the cell wall of fungal pathogens, were also found. CQUSa03 is predicted to have great potential in agriculture by producing a variety of antagonistic active compounds, cell wall hydrolases, and bacteriostatic peptides to control diseases. The genome sequence provided a theoretical basis for analyzing the biocontrol mechanism of S. angustmyceticus CQUSa03 and laid a foundation for the development and industrialization of biocontrol agents.


Assuntos
Micoses , Oomicetos , Solanum tuberosum , Agentes de Controle Biológico , Solanum tuberosum/microbiologia
4.
Plant Dis ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37115567

RESUMO

The genus Taxus is the natural material of the anticancer drug paclitaxel (Xiong et al. 2021). Harvesting sources of paclitaxel from the wild has greatly decreased the population of these trees. One of the taxus species, Taxus × media Rehder, a natural hybrid of taxus trees, has a higher paclitaxel content (Zhou et al. 2019). It has been introduced and cultivated in Sichuan, Chongqing, Yunnan, Zhejiang, Jiangxi, and other places in China. In 2021, approximately 20% of T. media (an average 30% of the affected area per tree) showed obvious shoot and leaf blight symptoms in a plantation of taxus trees (about 40 ha of the planting area), located in Sandaoyan county, Sichuan province, China (GPS, 103°94'60″N, 30°84'97″E). Initially, brown necrotic spots appeared on shoots. Gradually, the spots increased in number, expanded to the leaf attached to the branch, and caused wilting of the shoots and leaves. To identify the pathogen, symptomatic samples were randomly collected. Lesion margins of the diseased leaves and barks were surface sterilized for 1 min in 75% ethanol, rinsed with sterile distilled water three times, dried with sterile filter paper, placed on potato dextrose agar (PDA) amended with streptomycin sulfate (50 mg/liter), and incubated at 28°C in the dark. Six purified fungal isolates were obtained. Collected isolates with similar morphology were described as Botryosphaeria spp. (Zhang et al. 2021). The colonies were initially white, gradually became dark gray with dense erial mycelium after 5 days, and formed black pycnidia (Dimensions, 121.3 to 134.6 µm, n = 5) after 16 days. Conidia were fusiform, aseptate, transparent, and thin-walled (23.6 ± 1.2 × 7.27 ± 1.3 µm, n = 50), similar to B. dothidea (Hattori et al. 2021). For pathogenicity testing, ten 2-year-old seedlings of T. media were selected. Fungal cakes of the isolate Tmsdy-2 were applied to the punctured stems of seedlings and covered with Parafilm. Pieces of sterile medium were used as controls. All the seedlings were incubated at 25 ± 2°C, 50% relative humidity, and 16 h of light in a greenhouse. Four days later, the inoculated seedlings developed brown spots and were blighted in 14 days, with symptoms similar to the original diseased plants. The controls remained healthy. The same fungus was reisolated from the infected tissues and subsequently identified by morphological characteristics and DNA sequence analysis. The pathogenicity test was repeated three times with similar results, confirming Koch's postulates. For molecular identification, the DNA of the isolates was extracted using a Quick-DNA Extraction Kit (Tiangen Biotech, Beijing). The ITS, LSU, SSU, TUB2, and TEF 1-α genes were amplified with the primer pairs ITS1/ITS4, LR0R/LR05, NS1/NS4 (Li et al. 2018), Bt2a/Bt2b, and EF1-728F/EF1-986R (Hattori et al. 2021), respectively. The generated sequences were deposited in GenBank with accession numbers OQ179939 (ITS), OQ179940 (LSU), OQ179942 (SSU), OQ268596 (TUB2), and OQ268597 (TEF 1-α). BLAST analyses showed >99.65% identity with previously deposited sequences of B. dothidea in GenBank. Based on the maximum likelihood method, phylogenetic analysis revealed 100% bootstrap support values with B. dothidea. The fungus was identified as B. dothidea based on morphological and multilocus phylogenetic analyses. To our knowledge, this is the first report of B. dothidea causing shoot and leaf blight of T. media in China. These results will contribute to developing control strategies for this disease.

5.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685857

RESUMO

Reactive oxygen species (ROS) are important regulating factors that play a dual role in plant and human cells. As the first messenger response in organisms, ROS coordinate signals in growth, development, and metabolic activity pathways. They also can act as an alarm mechanism, triggering cellular responses to harmful stimuli. However, excess ROS cause oxidative stress-related damage and oxidize organic substances, leading to cellular malfunctions. This review summarizes the current research status and mechanisms of ROS in plant and human eukaryotic cells, highlighting the differences and similarities between the two and elucidating their interactions with other reactive substances and ROS. Based on the similar regulatory and metabolic ROS pathways in the two kingdoms, this review proposes future developments that can provide opportunities to develop novel strategies for treating human diseases or creating greater agricultural value.


Assuntos
Células Eucarióticas , Estresse Oxidativo , Humanos , Espécies Reativas de Oxigênio
6.
Int J Mol Sci ; 25(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38203546

RESUMO

Taxus, a vital source of the anticancer drug paclitaxel, grapples with a pronounced supply-demand gap. Current efforts to alleviate the paclitaxel shortage involve expanding Taxus cultivation through cutting propagation. However, traditional cutting propagation of Taxus is difficult to root and time-consuming. Obtaining the roots with high paclitaxel content will cause tree death and resource destruction, which is not conducive to the development of the Taxus industry. To address this, establishing rapid and efficient stem rooting systems emerges as a key solution for Taxus propagation, facilitating direct and continuous root utilization. In this study, Agrobacterium rhizogenes were induced in the 1-3-year-old branches of Taxus × media Rehder, which has the highest paclitaxel content. The research delves into the rooting efficiency induced by different A. rhizogenes strains, with MSU440 and C58 exhibiting superior effects. Transcriptome and metabolome analyses revealed A. rhizogenes' impact on hormone signal transduction, amino acid metabolism, zeatin synthesis, and secondary metabolite synthesis pathways in roots. LC-MS-targeted quantitative detection showed no significant difference in paclitaxel and baccatin III content between naturally formed and induced roots. These findings underpin the theoretical framework for T. media rapid propagation, contributing to the sustainable advancement of the Taxus industry.


Assuntos
Agrobacterium , Invenções , Taxus , Taxus/genética , Tecnologia , Paclitaxel/farmacologia
7.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834885

RESUMO

Potato late blight, caused by Phytophthora infestans, leads to a significant reduction in the yield and value of potato. Biocontrol displays great potential in the suppression of plant diseases. Diallyl trisulfide (DATS) is a well-known natural compound for biocontrol, although there is little information about it against potato late blight. In this study, DATS was found to be able to inhibit the hyphae growth of P. infestans, reduce its pathogenicity on detached potato leaves and tubers, and induce the overall resistance of potato tubers. DATS significantly increases catalase (CAT) activity of potato tubers, and it does not affect the levels of peroxidase (POD), superoxide dismutase (SOD), and malondialdehyde (MDA). The transcriptome datasets show that totals of 607 and 60 significantly differentially expressed genes (DEGs) and miRNAs (DEMs) are detected. Twenty-one negatively regulated miRNA-mRNA interaction pairs are observed in the co-expression regulatory network, which are mainly enriched in metabolic pathways, biosynthesis of secondary metabolites, and starch and sucrose metabolism based on the KEGG pathway. Our observations provide new insight into the role of DATS in biocontrol of potato late blight.


Assuntos
MicroRNAs , Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/genética , RNA Mensageiro , Transcriptoma , Phytophthora infestans/genética , Doenças das Plantas/genética
8.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834921

RESUMO

The jasmonic acid (JA) signaling pathway plays important roles in plant defenses, development, and the synthesis of specialized metabolites synthesis. Transcription factor MYC2 is a major regulator of the JA signaling pathway and is involved in the regulation of plant physiological processes and specialized metabolite synthesis. Based on our understanding of the mechanism underlying the regulation of specialized metabolite synthesis in plants by the transcription factor MYC2, the use of synthetic biology approaches to design MYC2-driven chassis cells for the synthesis of specialized metabolites with high medicinal value, such as paclitaxel, vincristine, and artemisinin, seems to be a promising strategy. In this review, the regulatory role of MYC2 in JA signal transduction of plants to biotic and abiotic stresses, plant growth, development and specialized metabolite synthesis is described in detail, which will provide valuable reference for the use of MYC2 molecular switches to regulate plant specialized metabolite biosynthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fenômenos Fisiológicos Vegetais , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901821

RESUMO

Regeneration refers to the process by which organisms repair and replace lost tissues and organs. Regeneration is widespread in plants and animals; however, the regeneration capabilities of different species vary greatly. Stem cells form the basis for animal and plant regeneration. The essential developmental processes of animals and plants involve totipotent stem cells (fertilized eggs), which develop into pluripotent stem cells and unipotent stem cells. Stem cells and their metabolites are widely used in agriculture, animal husbandry, environmental protection, and regenerative medicine. In this review, we discuss the similarities and differences in animal and plant tissue regeneration, as well as the signaling pathways and key genes involved in the regulation of regeneration, to provide ideas for practical applications in agriculture and human organ regeneration and to expand the application of regeneration technology in the future.


Assuntos
Células-Tronco Pluripotentes , Animais , Humanos , Medicina Regenerativa , Transdução de Sinais , Células-Tronco Totipotentes , Plantas
10.
BMC Plant Biol ; 22(1): 134, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35317739

RESUMO

BACKGROUND: AP2/ERF transcription factors are important in a variety of biological activities, including plant growth, development, and responses to biotic and abiotic stressors. However, little study has been done on cotton's AP2/ERF genes, although cotton is an essential fibre crop. We were able to examine the tissue and expression patterns of AP2/ERF genes in cotton on a genome-wide basis because of the recently published whole genome sequence of cotton. Genome-wide analysis of ERF gene family within two diploid species (G. arboreum & G. raimondii) and two tetraploid species (G. barbadense, G. hirsutum) was performed. RESULTS: A total of 118, 120, 213, 220 genes containing the sequence of single AP2 domain were identified in G. arboreum, G. raimondii, G. barbadense and G. hirsutum respectively. The identified genes were unevenly distributed across 13/26 chromosomes of A and D genomes of cotton. Synteny and collinearity analysis revealed that segmental duplications may have played crucial roles in the expansion of the cotton ERF gene family, as well as tandem duplications played a minor role. Cis-acting elements of the promoter sites of Ghi-ERFs genes predict the involvement in multiple hormone responses and abiotic stresses. Transcriptome and qRT-PCR analysis revealed that Ghi-ERF-2D.6, Ghi-ERF-12D.13, Ghi-ERF-6D.1, Ghi-ERF-7A.6 and Ghi-ERF-11D.5 are candidate genes against salinity tolerance in upland cotton. CONCLUSION: Overwhelmingly, the present study paves the way to better understand the evolution of cotton ERF genes and lays a foundation for future investigation of ERF genes in improving salinity stress tolerance in cotton.


Assuntos
Gossypium/genética , Família Multigênica , Proteínas de Plantas , Mapeamento Cromossômico , Genoma de Planta , Filogenia , Proteínas de Plantas/genética , Sintenia
11.
Planta ; 256(3): 63, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35995890

RESUMO

MAIN CONCLUSION: GhMYC2 regulates the gossypol biosynthesis pathway in cotton through activation of the expression of gossypol synthesis gene CYP71BE79, CDNC, CYP706B1, DH1, and CYP82D113. Cotton is one of the main cash crops globally. Cottonseed contains fiber, fat, protein, and starch, and has important economic value. However, gossypol in cottonseed seriously affects the development and utilization of cottonseed. Nonetheless, gossypol has great application potential in agriculture, medicine, and industry. Therefore, it is very important to study gossypol biosynthesis and its upstream regulatory pathways. It has been reported that the content of gossypol in hairy roots of cotton is regulated through jasmonic acid signaling; however, the specific molecular mechanism has not been revealed yet. We found that the expression of basic helix-loop-helix family transcription factor GhMYC2 was significantly upregulated after exogenous administration of methyl jasmonate to cotton seedlings, and the content of gossypol changed significantly with the variation of GhMYC2 expression. Further studies revealed that GhMYC2 could specifically bind to the G-Box in the promoter region of CDNC, CYP706B1, DH1, CYP82D113, CYP71BE79 to activate its expression and regulate gossypol synthesis, and its activation of CYP71BE79 promoter was inhibited by GhJAZ2. Not only that GhMYC2 could also interact with GoPGF. In this work, the molecular mechanisms of gossypol biosynthesis regulated by GhMYC2 were analyzed. The results provide a theoretical basis for cultivating new varieties of low-gossypol or high-gossypol cotton and creating excellent germplasm resources.


Assuntos
Gossipol , Vias Biossintéticas/genética , Óleo de Sementes de Algodão , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Gossypium/genética , Gossypium/metabolismo , Gossipol/metabolismo , Metabolismo Secundário
12.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35806454

RESUMO

Target of rapamycin (TOR) is a serine/threonine protein kinase that plays a central regulating role in cell proliferation, growth, and metabolism, but little is known about the TOR signaling pathway in Chlorella sorokiniana. In this study, a Chlorella sorokiniana DP-1 strain was isolated and identified, and its nutritional compositions were analyzed. Based on homologous sequence analysis, the conserved CsTOR protein was found in the genome of Chlorella sorokiniana. In addition, the key components of TOR complex 1 (TORC1) were present, but the components of TORC2 (RICTOR and SIN1) were absent in Chlorella sorokiniana. Pharmacological assays showed that Chlorella sorokiniana DP-1 was insensitive to rapamycin, Torin1 and KU0063794, whereas AZD8055 could significantly inhibit the growth of Chlorella sorokiniana. RNA-seq analysis showed that CsTOR regulated various metabolic processes and signal transduction pathways in AZD8055-treated Chlorella sorokiniana DP-1. Most genes involved in photosynthesis and carbon fixation in Chlorella sorokiniana DP-1 were significantly downregulated under CsTOR inhibition, indicating that CsTOR positively regulated the photosynthesis in Chlorella sorokiniana. Furthermore, CsTOR controlled protein synthesis and degradation by positively regulating ribosome synthesis and negatively regulating autophagy. These observations suggested that CsTOR plays an important role in photosynthesis and cellular metabolism, and provide new insights into the function of CsTOR in Chlorella sorokiniana.


Assuntos
Chlorella , Chlorella/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fotossíntese , Transdução de Sinais , Sirolimo/farmacologia
13.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408782

RESUMO

With intensification of urbanization throughout the world, food security is being threatened by the population surge, frequent occurrence of extreme climate events, limited area of available cultivated land, insufficient utilization of urban space, and other factors. Determining the means by which high-yielding and high-quality crops can be produced in a limited space is an urgent priority for plant scientists. Dense planting, vertical production, and indoor cultivation are effective ways to make full use of space and improve the crop yield. The results of physiological and molecular analyses of the model plant species Arabidopsis thaliana have shown that the plant response to shade is the key to regulating the plant response to changes in light intensity and quality by integrating light and auxin signals. In this study, we have summarized the major molecular mechanisms of shade avoidance and shade tolerance in plants. In addition, the biotechnological strategies of enhancing plant shade tolerance are discussed. More importantly, cultivating crop varieties with strong shade tolerance could provide effective strategies for dense planting, vertical production, and indoor cultivation in urban agriculture in the future.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Agricultura , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Plantas/metabolismo
14.
Int J Mol Sci ; 23(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36232611

RESUMO

Auxenochlorella pyrenoidosa is an efficient photosynthetic microalga with autotrophic growth and reproduction, which has the advantages of rich nutrition and high protein content. Target of rapamycin (TOR) is a conserved protein kinase in eukaryotes both structurally and functionally, but little is known about the TOR signalling in Auxenochlorella pyrenoidosa. Here, we found a conserved ApTOR protein in Auxenochlorella pyrenoidosa, and the key components of TOR complex 1 (TORC1) were present, while the components RICTOR and SIN1 of the TORC2 were absent in Auxenochlorella pyrenoidosa. Drug sensitivity experiments showed that AZD8055 could effectively inhibit the growth of Auxenochlorella pyrenoidosa, whereas rapamycin, Torin1 and KU0063794 had no obvious effect on the growth of Auxenochlorella pyrenoidosaa. Transcriptome data results indicated that Auxenochlorella pyrenoidosa TOR (ApTOR) regulates various intracellular metabolism and signaling pathways in Auxenochlorella pyrenoidosa. Most genes related to chloroplast development and photosynthesis were significantly down-regulated under ApTOR inhibition by AZD8055. In addition, ApTOR was involved in regulating protein synthesis and catabolism by multiple metabolic pathways in Auxenochlorella pyrenoidosa. Importantly, the inhibition of ApTOR by AZD8055 disrupted the normal carbon and nitrogen metabolism, protein and fatty acid metabolism, and TCA cycle of Auxenochlorella pyrenoidosa cells, thus inhibiting the growth of Auxenochlorella pyrenoidosa. These RNA-seq results indicated that ApTOR plays important roles in photosynthesis, intracellular metabolism and cell growth, and provided some insights into the function of ApTOR in Auxenochlorella pyrenoidosa.


Assuntos
Fotossíntese , Sirolimo , Carbono , Ácidos Graxos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Nitrogênio , Proteínas Quinases/metabolismo , Sirolimo/farmacologia
15.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293072

RESUMO

Cotton is an important economic crop. Fusarium and Verticillium are the primary pathogenic fungi that threaten both the quality and sustainable production of cotton. As an opportunistic pathogen, Fusarium causes various human diseases, including fungal keratitis, which is the most common. Therefore, there is an urgent need to study and clarify the resistance mechanisms of cotton and humans toward Fusarium in order to mitigate, or eliminate, its harm. Herein, we first discuss the resistance and susceptibility mechanisms of cotton to Fusarium and Verticillium wilt and classify associated genes based on their functions. We then outline the characteristics and pathogenicity of Fusarium and describe the multiple roles of human neutrophils in limiting hyphal growth. Finally, we comprehensively compare the similarities and differences between animal and plant resistance to Fusarium and put forward new insights into novel strategies for cotton disease resistance breeding and treatment of Fusarium infection in humans.


Assuntos
Fusarium , Verticillium , Humanos , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Melhoramento Vegetal , Resistência à Doença/genética , Gossypium , Mecanismos de Defesa
16.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36499148

RESUMO

Insect development requires genes to be expressed in strict spatiotemporal order. The dynamic regulation of genes involved in insect development is partly orchestrated by the histone acetylation-deacetylation via histone acetyltransferases (HATs) and histone deacetylases (HDACs). Although histone deacetylase 3 (HDAC3) is required for mice during early embryonic development, its functions in Helicoverpa armigera (H. armigera) and its potential to be used as a target of insecticides remain unclear. We treated H. armigera with HDAC3 siRNA and RGFP966, a specific inhibitor, examining how the HDAC3 loss-of-function affects growth and development. HDAC3 siRNA and RGFP966 treatment increased mortality at each growth stage and altered metamorphosis, hampering pupation and causing abnormal wing development, reduced egg production, and reduced hatching rate. We believe that the misregulation of key hormone-related genes leads to abnormal pupa development in HDAC3 knockout insects. RNA-seq analysis identified 2788 differentially expressed genes (≥two-fold change; p ≤ 0.05) between siHDAC3- and siNC-treated larvae. Krüppel homolog 1 (Kr-h1), was differentially expressed in HDAC3 knockdown larvae. Pathway-enrichment analysis revealed the significant enrichment of genes involved in the Hippo, MAPK, and Wnt signaling pathways following HDAC3 knockdown. Histone H3K9 acetylation was increased in H. armigera after siHDAC3 treatment. In conclusion, HDAC3 knockdown dysregulated juvenile hormone (JH)-related and apoptosis-related genes in H. armigera. The results showed that the HDAC3 gene is a potential target for fighting H. armigera.


Assuntos
Hormônios Juvenis , Mariposas , Camundongos , Animais , Hormônios Juvenis/farmacologia , Hormônios Juvenis/metabolismo , Histonas/genética , Histonas/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Mariposas/metabolismo , Apoptose/genética , Larva/metabolismo
17.
BMC Genomics ; 22(1): 821, 2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34773990

RESUMO

BACKGROUND: The tricarboxylic acid (TCA) cycle is crucial for energy supply in animal, plant, and microbial cells. It is not only the main pathway of carbohydrate catabolism but also the final pathway of lipid and protein catabolism. Some TCA genes have been found to play important roles in the growth and development of tomato and potato, but no comprehensive study of TCA cycle genes in Solanaceae crops has been reported. RESULTS: In this study, we analyzed TCA cycle genes in four important Solanaceae vegetable crops (potato (Solanum tuberosum), tomato (Solanum lycopersicum), eggplant (Solanum melongena), and pepper (Capsicum annuum)) based on comparative genomics. The four Solanaceae crops had a total of 180 TCA cycle genes: 43 in potato, 44 in tomato, 40 in eggplant, and 53 in pepper. Phylogenetic analysis, collinearity analysis, and tissue expression patterns revealed the conservation of and differences in TCA cycle genes between the four Solanaceae crops and found that there were unique subgroup members in Solanaceae crops that were independent of Arabidopsis genes. The expression analysis of potato TCA cycle genes showed that (1) they were widely expressed in various tissues, and some transcripts like Soltu.DM.01G003320.1(SCoAL) and Soltu.DM.04G021520.1 (SDH) mainly accumulate in vegetative organs, and some transcripts such as Soltu.DM.12G005620.3 (SDH) and Soltu.DM.02G007400.4 (MDH) are preferentially expressed in reproductive organs; (2) several transcripts can be significantly induced by hormones, such as Soltu.DM.08G023870.2 (IDH) and Soltu.DM.06G029290.1 (SDH) under ABA treatment, and Soltu.DM.07G021850.2 (CSY) and Soltu.DM.09G026740.1 (MDH) under BAP treatment, and Soltu.DM.02G000940.1 (IDH) and Soltu.DM.01G031350.4 (MDH) under GA treatment; (3) Soltu.DM.11G024650.1 (SDH) can be upregulated by the three disease resistance inducers including Phytophthora infestans, acibenzolar-S-methyl (BTH), and DL-ß-amino-n-butyric acid (BABA); and (4) the levels of Soltu.DM.01G045790.1 (MDH), Soltu.DM.01G028520.3 (CSY), and Soltu.DM.12G028700.1 (CSY) can be activated by both NaCl and mannitol. The subcellular localization results of three potato citrate synthases showed that Soltu.DM.01G028520.3 was localized in mitochondria, while Soltu.DM.12G028700.1 and Soltu.DM.07G021850.1 were localized in the cytoplasm. CONCLUSIONS: This study provides a scientific foundation for the comprehensive understanding and functional studies of TCA cycle genes in Solanaceae crops and reveals their potential roles in potato growth, development, and stress response.


Assuntos
Solanum tuberosum , Ciclo do Ácido Cítrico/genética , Genômica , Filogenia , Solanum tuberosum/genética , Verduras
18.
Plant Biotechnol J ; 19(10): 2097-2112, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34036698

RESUMO

Verticillium wilt is caused by the soil-borne vascular pathogen Verticillium dahliae, and affects a wide range of economically important crops, including upland cotton (Gossypium hirsutum). Previous studies showed that expression levels of BIN2 were significantly down-regulated during infestation with V. dahliae. However, the underlying molecular mechanism of BIN2 in plant regulation against V. dahliae remains enigmatic. Here, we characterized a protein kinase GhBIN2 from Gossypium hirsutum, and identified GhBIN2 as a negative regulator of resistance to V. dahliae. The Verticillium wilt resistance of Arabidopsis and cotton were significantly enhanced when BIN2 was knocked down. Constitutive expression of BIN2 attenuated plant resistance to V. dahliae. We found that BIN2 regulated plant endogenous JA content and influenced the expression of JA-responsive marker genes. Further analysis revealed that BIN2 interacted with and phosphorylated JAZ family proteins, key repressors of the JA signalling pathway in both Arabidopsis and cotton. Spectrometric analysis and site-directed mutagenesis showed that BIN2 phosphorylated AtJAZ1 at T196, resulting in the degradation of JAZ proteins. Collectively, these results show that BIN2 interacts with JAZ proteins and plays a negative role in plant resistance to V. dahliae. Thus, BIN2 may be a potential target gene for genetic engineering against Verticillium wilt in crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Verticillium , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ascomicetos , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/metabolismo , Doenças das Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases
19.
Phytopathology ; 111(11): 2067-2079, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33787286

RESUMO

Reactive oxygen species (ROSs) are critical for the growth, development, proliferation, and pathogenicity of microbial pathogens; however, excessive levels of ROSs are toxic. Little is known about the signaling cascades in response to ROS stress in oomycetes such as Phytophthora infestans, the causal agent of potato late blight. Here, P. infestans was used as a model system to investigate the mechanism underlying the response to ROS stress in oomycete pathogens. Results showed severe defects in sporangium germination, mycelium growth, appressorium formation, and virulence of P. infestans in response to H2O2 stress. Importantly, these phenotypes mimic those of P. infestans treated with rapamycin, the inhibitor of target of rapamycin (TOR, 1-phosphatidylinositol-3-kinase). Strong synergism occurred when P. infestans was treated with a combination of H2O2 and rapamycin, suggesting that a crosstalk exists between ROS stress and the TOR signaling pathway. Comprehensive analysis of transcriptome, proteome, and phosphorylation omics showed that H2O2 stress significantly induced the operation of the TOR-mediated autophagy pathway. Monodansylcadaverine staining showed that in the presence of H2O2 and rapamycin, the autophagosome level increased in a dosage-dependent manner. Furthermore, transgenic potatoes containing double-stranded RNA of TOR in P. infestans (PiTOR) displayed high resistance to P. infestans. Therefore, TOR is involved in the ROS response and is a potential target for control of oomycete diseases, because host-mediated silencing of PiTOR increases potato resistance to late blight.


Assuntos
Phytophthora infestans , Solanum tuberosum , Peróxido de Hidrogênio , Doenças das Plantas , Espécies Reativas de Oxigênio
20.
Plant Dis ; 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34213965

RESUMO

Ligusticum chuanxiong (known as Chuanxiong in China) is a traditional edible-medicinal herb, which has been playing important roles in fighting against COVID-19 (Ma et al. 2020). In March 2021, we investigated stem rot of Chuanxiong in six adjacent fields (~100 ha) in Chengdu, Sichuan Province, China. The disease incidence was above 5% in each field. Symptomatic plants showed stem rot, watersoaked lesions, and blackening with white hyphae present on the stems. Twelve symptomatic Chuanxiong plants (2 plants/field) were sampled. Diseased tissues from the margins of necrotic lesions were surface sterilized in 75% ethanol for 45 s, and 2% NaClO for 5 min. Samples were then rinsed three times in sterile distilled water and cultured on potato dextrose agar (PDA) at 25ºC for 72 h. Fourteen fungal cultures were isolated from 18 diseased tissues, of which eight monosporic isolates showed uniform characteristics. The eight fungal isolates showed fluffy white aerial mycelia and produced yellow pigments with age. Mung bean broth was used to induce sporulation. Macroconidia were sickle-shaped, slender, 3- to 5-septate, and averaged 50 to 70 µm in length. Based on morphological features of colonies and conidia, the isolates were tentatively identified as Fusarium spp. (Leslie and Summerell 2006). To identify the species, the partial translation elongation factor 1 alpha (TEF1-α) gene was amplified and sequenced (O'Donnell et al. 1998). TEF1-α sequences of LCSR01, LCSR02 and LCSR05 isolates (GenBank nos. MZ169386, MZ169388 and MZ169387) were 100%, 99.72% and 99.86% identical to that of F. asiaticum strain NRRL 26156, respectively. The phylogenetic tree based on TEF1-α sequences showed these isolates clustered with F. asiaticum using Neighbor-Joining algorithm. Furthermore, these isolates were identified using the specific primer pair Fg16 F/R (Nicholson et al. 1998). The results showed these isolates (GenBank nos. MZ164938, MZ164939 and MZ164940) were 100% identical to F. asiaticum NRRL 26156. Pathogenicity test of the isolate LCSR01 was conducted on Chuanxiong. After wounding Chuanxiong stalks and rhizomes with a sterile needle, the wounds were inoculated with mycelia PDA plugs. A total of 30 Chuanxiong rhizomes and stalks were inoculated with mycelia PDA plugs, and five mock-inoculated Chuanxiong rhizomes and stalks served as controls. After inoculation, the stalks and rhizomes were kept in a moist chamber at 25°C in the dark. At 8 days post inoculation (dpi), all inoculated stalks and rhizomes exhibited water-soaked and blackened lesions. At 10 dpi, the stalks turned soft and decayed, and abundant hyphae grew on the exterior of infected plants, similar to those observed in the field. No disease symptoms were observed on the control plants. The pathogen was re-isolated from the inoculated tissues and the identity was confirmed as described above. Ten fungal cultures were re-isolated from the 10 inoculated tissues, of which nine fungal cultures were F. asiaticum, fulfilling Koch's postulates. To our knowledge, this is the first report of F. asiaticum causing stem rot of Chuanxiong in China. Chuanxiong has been cultivated in rotation with rice over multiple years. This rotation may have played a role in the increase in inoculum density in soil and stem rot epidemics in Chuanxiong. Diseased Chuanxiong may be contaminated with the mycotoxins produced by F. asciaticum, 3-acetyldeoxynivalenol or nivalenol, which may deleteriously affect human health. Therefore, crop rotations should be considered carefully to reduce disease impacts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA