Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ren Fail ; 45(1): 2202284, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37271873

RESUMO

BACKGROUND: Diet management is an effective way to retard the progression of chronic kidney disease (CKD). However, very few studies investigated the influence of carbohydrate intake on CKD patients. In this prospective cohort study, the associations between carbohydrate intake and all-cause mortality were investigated in US adult CKD patients. METHODS: Multivariable Cox proportional hazard models and iso-caloric replacement analysis were used to investigate the associations between the macronutrients and the all-cause mortality risk. Total 3683 US adult CKD patients 20 years or older from the National Health and Nutrition Examination Survey (NHANES, 2003-2014) were analyzed (mean age ± SD, 62.4 ± 17.1; 56.5% female), of which 1082 participants with CKD died with a median follow-up time of 67 (IQR 36-99) months. RESULTS: Most macronutrients were non-linearly associated with all-cause mortality risk, including carbohydrates and sugar. Participants with CKD had lower mortality risk when consuming 30-45% energy from carbohydrates (average HR 0.76, 95%CI 0.62-0.93, compared with 60%), 5-20% energy from sugar (average HR 0.75, 95% CI 0.59-0.96 compared with 40%). Replacing the energy intake from carbohydrates with protein (up to 30%) and/or replacing the sugar with non-sugar carbohydrates (up to 55%) reduced the all-cause mortality risk, while the total energy intake remained constant. CONCLUSIONS: Diet advice should be given according to the current diet status, and constituents of carbohydrates should also be taken into consideration.


Assuntos
Insuficiência Renal Crônica , Adulto , Humanos , Feminino , Masculino , Inquéritos Nutricionais , Estudos Prospectivos , Modelos de Riscos Proporcionais , Carboidratos
2.
Chem Res Toxicol ; 35(6): 1023-1035, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35575305

RESUMO

2,2',4,4'-Tetrabromodiphenyl ether (PBDE 47) is one of the most prominent PBDE congeners detected in the human body, suggesting that the potential health risks of PBDE 47 should be thoroughly considered. However, the cardiovascular toxicity of PBDE 47 remains poorly understood. Here, toxic outcomes of PBDE 47 in human THP-1 macrophages concerning foam cell formation, which play crucial roles in the occurrence and development of atherosclerosis, were elucidated. First, our results indicated that PBDE 47 affected the PPARγ pathway most efficiently in THP-1 macrophages by transcriptomic analysis. Second, the PPARγ target genes CD36 and FABP4, responsible for lipid uptake and accumulation in macrophages, were consistently upregulated both at transcriptional and translational levels in THP-1 macrophages upon PBDE 47. Unexpectedly, PBDE 47 failed to activate the PPARγ target gene LXRα and PPARγ-LXRα-ABCA1/G1 cascade, which is activated by the PPARγ full agonist rosiglitazone and enables cholesterol efflux in macrophages. Thus, coincident with the selective upregulation of the PPARγ target genes CD36 and FABP4, PBDE 47, distinct from rosiglitazone, functionally resulted in more lipid accumulation and oxLDL uptake in THP-1 macrophages through high-content analysis (HCA). Moreover, these effects were markedly abrogated by the addition of the PPARγ antagonist T0070907. Mechanistically, the structural basis of selective activation of PPARγ by PBDE 47 was explored by molecular docking and dynamics simulation, which indicated that PBDE 47 interacted with the PPARγ ligand binding domain (PPARγ-LBD) distinctively from that of rosiglitazone. PBDE 47 was revealed to interact with helix 3 and helix 5 but not helix 12 in the PPARγ-LBD. Collectively, these results unraveled the potential cardiovascular toxicity of PBDE 47 by selective activation of PPARγ to facilitate foam cell formation for the first time.


Assuntos
Células Espumosas , PPAR gama , Antígenos CD36/genética , Linhagem Celular , Colesterol/metabolismo , Éter/metabolismo , Células Espumosas/metabolismo , Éteres Difenil Halogenados , Humanos , Receptores X do Fígado , Macrófagos/metabolismo , Simulação de Acoplamento Molecular , PPAR gama/metabolismo , Rosiglitazona
3.
Ren Fail ; 44(1): 958-965, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35678258

RESUMO

BACKGROUND: Acute kidney injury (AKI), a rare adverse event, cannot be ignored as millions of doses of coronavirus disease 2019 (COVID-19) vaccinations. We aimed to investigate the occurrence of post-vaccine AKI reported to the Vaccine Adverse Event Reporting System (VAERS). METHODS: After data mapping from December 2020 to June 2021, we summarized demographic and clinical features and outcomes of reported cases from three vaccines (Pfizer-BNT, MODERNA, and JANSSEN). The Bayesian and nonproportional analyses explored the correlations between COVID-19 vaccines and AKI. RESULTS: We identified 1133 AKI cases. Pfizer-BNT appeared to have a stronger AKI correlation than MODERNA and JANSSEN, based on the highest reporting odds ratio (ROR = 2.15, 95% confidence interval = 1.97, 2.36). We observed the differences in ages, comorbidities, current illnesses, post-vaccine AKI causes, and time to AKI onset (all p<.05) among three vaccines. Most patients are elderly, with the highest age in MODERNA (68.41 years) and lowest in JANSSEN (59.75 years). Comorbidities were noticed in 58.83% of the cases and active infections in over 20% of cases. The leading cause of post-vaccine AKI was volume depletion (40.78%), followed by sepsis (11.74%). Patients in Pfizer-BNT had the worst outcome with 19.78% deaths, following 17.78% in MODERNA and 12.36% in JANSSEN (p = .217). The proportion of patients on dialysis was higher in JANSSEN than in Pfizer-BNT and MODERNA (14.61% vs. 6.54%, 10.62%, p = .008). CONCLUSION: AKI could occur after the COVID-19 vaccines, predominantly in elderly patients. However, the causality needs further identification.


Assuntos
Injúria Renal Aguda , COVID-19 , Vacinas , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/epidemiologia , Idoso , Teorema de Bayes , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Humanos , Vacinas/efeitos adversos
4.
Traffic ; 20(6): 448-459, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30989771

RESUMO

Kidney proximal tubule (PT) cells have high-metabolic demands to drive the extraordinary ion and solute transport, water reabsorption, and endocytic uptake that occur in this nephron segment. Increases in renal blood flow alter glomerular filtration rate and lead to rapid mechanosensitive adaptations in PT transport, impacting metabolic demand. Although the PT reabsorbs essentially all of the filtered glucose, PT cells rely primarily on oxidative metabolism rather than glycolysis to meet their energy demands. We lack an understanding of how PT functions are impacted by changes in O2 availability via cortical capillaries and mechanosensitive signaling in response to alterations in luminal flow. Previously, we found that opossum kidney (OK) cells recapitulate key features of PT cells in vivo, including enhanced endocytic uptake and ion transport, when exposed to mechanical stimulation by culture on an orbital shaker. We hypothesized that increased oxygenation resulting from orbital shaking also contributes to this more physiologic phenotype. RNA seq of OK cells maintained under static conditions or exposed to orbital shaking for up to 96 hours showed significant time- and culture-dependent changes in gene expression. Transcriptional and metabolomics data were consistent with a decrease in glycolytic flux and with an increased utilization of aerobic metabolic pathways in cells exposed to orbital shaking. Moreover, we found spatial differences in the pattern of mitogenesis vs development of ion transport and endocytic capacities in our culture system that highlight the complexity of O2 -dependent and mechanosensitive crosstalk to regulate PT cell function.


Assuntos
Endocitose , Células Epiteliais/metabolismo , Túbulos Renais Proximais/citologia , Oxigênio/metabolismo , Estresse Mecânico , Transcriptoma , Animais , Técnicas de Cultura de Células/normas , Linhagem Celular , Glicólise , Túbulos Renais Proximais/metabolismo , Metaboloma , Monodelphis
5.
Neuromodulation ; 24(3): 441-447, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33751731

RESUMO

OBJECTIVES: Due to the impact of COVID-19 epidemic, face-to-face follow-up treatments for patients with chronic pain and implanted spinal cord stimulation (SCS) devices are forced to be delayed or stopped. This has led to more follow ups being done remotely. Meanwhile, with the development of 4G/5G networks, smartphones, and novel devices, remote programming has become possible. Here, we investigated the demand and utility of remote follow-ups including remote programming for SCS for patients with chronic pain. MATERIALS AND METHODS: A questionnaire including questions on demographic characteristics, pain history, postimplantation life quality, standard follow-up experience, remote follow-up, and remote programming experience was sent to patients diagnosed as chronic intractable pain and treated with SCS during January 2019 to January 2020. RESULTS: A total of 64 participants completed the questionnaire. About 70% of participants expressed demands for remote follow-ups due to the inconvenience, high costs, and time consumption of traditional follow-up visits. Nearly 97% of participants have attempted remote follow-ups, and about 81% of participants have further tried remote programming. Approximately, 96% of them recognized the benefits. CONCLUSIONS: The remote programming was in high demand among participants. Most of the participants have tried remote follow-ups or even remote programming. The remote programming appeared to be more efficient, economic and were widely recognized among participants.


Assuntos
COVID-19/prevenção & controle , Dor Crônica/terapia , Surtos de Doenças/prevenção & controle , Neuroestimuladores Implantáveis , Tecnologia de Sensoriamento Remoto/métodos , Estimulação da Medula Espinal/métodos , Adulto , COVID-19/epidemiologia , China/epidemiologia , Dor Crônica/epidemiologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Medição da Dor/métodos
6.
J Environ Sci (China) ; 101: 236-247, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33334519

RESUMO

The biosafety of methyl tertiary-butyl ether (MTBE), mainly used as a gasoline additive, has long been a contentious topic. In addition to its routine toxicities, MTBE has been demonstrated to disrupt glucose and lipid metabolism and contribute to the development of type 2 diabetes as well as obesity. As one of the morbidities related to dyslipidemia, atherosclerosis is worthy of being investigated under MTBE exposure. Since foam cells derived from macrophages play pivotal roles during atherosclerosis development, we studied the effects of MTBE on macrophages in vitro and assessed the effect of MTBE on atherosclerosis plaque formation with the ApoE-/- mouse model in vivo for the first time. Our results demonstrated that exposure to MTBE at environmentally relevant concentrations decreased the expression of ABCA1 and ABCG1, which are responsible for macrophage cholesterol efflux, at both mRNA and protein levels in THP-1 macrophages. Consequently, treatment with MTBE inhibited the transport of cholesterol from macrophages to High-density lipoprotein. ApoE-/- mice exposed to MTBE at environmentally relevant concentrations (100, 1000 µg/kg) displayed significant increases in lesion area in the aorta and aortic root compared to vehicle-treated ones. Further analysis indicated that MTBE exposure enhanced the macrophage-specific marker Mac-2 contents within plaques in the aortic root, implying that MTBE could promote macrophage-derived foam cell formation and thus accelerate atherosclerosis plaque formation. We for the first time demonstrated the pro-atherogenic effect of MTBE via eliciting disruption of macrophage cholesterol efflux and accelerating foam cell formation and atherosclerosis plaque development.


Assuntos
Aterosclerose , Diabetes Mellitus Tipo 2 , Animais , Apolipoproteínas E/genética , Colesterol , Éteres , Macrófagos , Camundongos
7.
Am J Physiol Renal Physiol ; 318(3): F851-F859, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32068462

RESUMO

Albuminuria is frequently associated with proximal tubule (PT) cytotoxicity that can feed back to cause glomerular damage and exacerbate kidney disease. PT cells express megalin and cubilin receptors that bind to and internalize albumin over a broad concentration range. How the exposure to high concentrations of albumin leads to PT cytotoxicity remains unclear. Fatty acids and other ligands bound to albumin are known to trigger production of reactive oxygen species (ROS) that impair PT function. Alternatively or in addition, uptake of high concentrations of albumin may overload the endocytic pathway and elicit downstream responses. Here, we used a well-differentiated PT cell culture model with high endocytic capacity to dissect the effects of albumin versus its ligands on endocytic uptake and degradation of albumin, production of ROS, and cell viability. Cellular responses differed dramatically, depending on the preparation of albumin tested. Knockdown of megalin or cubilin failed to prevent ROS production mediated by albumin ligands, suggesting that receptor-mediated internalization of albumin was not necessary to trigger cellular responses to albumin ligands. Moreover, albumin induced cytotoxic responses when added to the basolateral surface of PT cells. Whereas overnight incubation with high concentrations of fatty acid-free albumin had no overt effects on cell function or viability, lysosomal degradation kinetics were slowed upon longer exposure, consistent with overload of the PT endocytic/degradative pathway. Together, the results of our study demonstrate that the PT responds independently to albumin and to its ligands and suggest that the consequences of albumin overload in vivo may be dependent on metabolic state.


Assuntos
Albuminas/metabolismo , Aconitato Hidratase/metabolismo , Albuminas/administração & dosagem , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Estresse Oxidativo , Interferência de RNA , Espécies Reativas de Oxigênio , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
8.
Am J Physiol Renal Physiol ; 318(5): F1284-F1294, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32200668

RESUMO

Proximal tubule (PT) cells express a single saturable albumin-binding site whose affinity matches the estimated tubular concentration of albumin; however, albumin uptake capacity is greatly increased under nephrotic conditions. Deciphering the individual contributions of megalin and cubilin to the uptake of normal and nephrotic levels of albumin is impossible in vivo, as knockout of megalin in mice globally disrupts PT endocytic uptake. We quantified concentration-dependent albumin uptake in an optimized opossum kidney cell culture model and fit the kinetic profiles to identify albumin-binding affinities and uptake capacities. Mathematical deconvolution fit best to a three-component model that included saturable high- and low-affinity uptake sites for albumin and underlying nonsaturable uptake consistent with passive uptake of albumin in the fluid phase. Knockdown of cubilin or its chaperone amnionless selectively reduced the binding capacity of the high-affinity site, whereas knockdown of megalin impacted the low-affinity site. Knockdown of disabled-2 decreased the capacities of both binding sites. Additionally, knockdown of megalin or disabled-2 profoundly inhibited the uptake of a fluid phase marker, with cubilin knockdown having a more modest effect. We propose a novel model for albumin retrieval along the PT in which cubilin and megalin receptors have different functions in recovering filtered albumin in proximal tubule cells. Cubilin binding to albumin is tuned to capture normally filtered levels of the protein. In contrast, megalin binding to albumin is of lower affinity, and its expression is also essential for enabling the recovery of high concentrations of albumin in the fluid phase.


Assuntos
Albuminúria/metabolismo , Túbulos Renais Proximais/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Nefrose/metabolismo , Receptores de Superfície Celular/metabolismo , Albumina Sérica/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Albuminúria/genética , Albuminúria/fisiopatologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Endocitose , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Túbulos Renais Proximais/fisiopatologia , Cinética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/deficiência , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout , Modelos Biológicos , Nefrose/genética , Nefrose/fisiopatologia , Gambás , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética
9.
J Environ Sci (China) ; 85: 208-219, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31471028

RESUMO

Methyl tert-butyl ether (MTBE), as a widely used gasoline additive, is suspected of being environmentally toxic. MTBE accumulates mainly in adipose tissue, but its effect on obesity or obesity-related metabolic disorders has not been well understood yet. Therefore, we examined the effect of MTBE on the adipose function and the related metabolic processes with both 3T3-L1 cell line and C57BL/6J mice model. We found that exposure to MTBE at the environmental relevant concentration (100 µmol/L) could significantly induce differentiation of preadipocyte and disturb insulin-stimulated glucose uptake of mature adipocyte. The in vivo observation in male mice showed a positive correlation of visceral white adipose tissue (vWAT) expansion and cell size increase with MTBE treatment in 14 weeks. Glucose tolerance and insulin sensitivity tests demonstrated that MTBE at 1000 µg/(kg·day) disturbed the systemic glucose metabolism in a gender-specific manner, which might be partly attributed to the alterations of gut microbiota community at genus level with respect to Akkermansia, Clostridium XlVb, and Megamonas. In summary, our study characterized the effect of MTBE on adipose tissue function and glucose homeostasis in vitro and in vivo, and revealed that systemic disorders of the glucose metabolism might be modulated by the related gut microbiota.


Assuntos
Poluentes Atmosféricos/toxicidade , Metabolismo dos Carboidratos/efeitos dos fármacos , Éteres Metílicos/toxicidade , Animais , Gasolina , Glucose/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes de Toxicidade
12.
Curr Res Toxicol ; 6: 100152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327637

RESUMO

Heavy metals (HMs) are environmental pollutants that pose a threat to human health and have been accepted to cause various diseases, including cancer and developmental disorders. DNA replication stress has been identified to be associated with such diseases. However, the effect of HMs exclusively on DNA replication stress is still not well understood. In this study, DNA replication stress induced by thirteen HMs was assessed using a simplified in-vitro DNA replication model. Two parameters, Cte/Ctc reflecting the cycle threshold value alteration and Ke/Kc reflecting the linear phase slope change, were calculated based on the DNA replication amplification curve to evaluate the rate of exponential and linear phases. These parameters were used to detect the replication rate reflecting in-vitro DNA replication stress induced by tested HMs. According to the effective concentrations and rate-limiting degree, HMs were ranked as follows: Hg, Ce > Pb > Zn > Cr > Cd > Co > Fe > Mn, Cu, Bi, Sr, Ni. Additionally, EDTA could relieve the DNA replication stress induced by some HMs. In conclusion, this study highlights the potential danger of HMs themselves on DNA replication and provides new insight into the possible links between HMs and DNA replication-related diseases.

13.
Environ Pollut ; 347: 123761, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38467365

RESUMO

Adipose tissue compromises one of the principal depots where brominated flame retardants (BFR) accumulate in vivo, yet whether BFR disturb thermogenic brown/beige adipocytes is still not referred to date. Herein, effects of BDE-99, a major congener of polybrominated diphenyl ethers (PBDEs) detected in humans, on brown/beige adipocytes were explored for the first time, aiming to provide new knowledge evaluating the obesogenic and metabolic disrupting effects of BFR. Our results firstly demonstrated that exposure to BDE-99 during the lineage commitment period significantly promoted C3H10T1/2 MSCs differentiating into brown/beige adipocytes, evidenced by the increase of brown/beige adipocyte marker UCP1, Cidea as well as mitochondrial membrane potential and basal respiration rate, which was similar to pharmacological PPARγ agonist rosiglitazone. Unexpectedly, the mitochondrial maximal respiration rate of BDE-99 stimulated brown/beige adipocytes was not synchronously enhanced and resulted in a significant reduction of mitochondrial spare respiration capacity (SRC) compared to control or rosiglitazone stimulated adipocytes, indicating a deficient energy-dissipating capacity of BDE-99 stimulated thermogenic adipocytes. Consistently with compromised mitochondrial SRC, lipidomic analysis further revealed that the lipids profile of mitochondria derived from BDE-99 stimulated brown/beige adipocytes were quite different from control or rosiglitazone stimulated cells. In detail, BDE-99 group contains more free fatty acid (FFA) and lyso-PE in mitochondria. In addition to energy metabolism, our results also demonstrated that BDE-99 stimulated brown/beige adipocytes were deficient in endocrine, which secreted more adverse adipokine named resistin, coinciding with comparable beneficial adipokine adiponectin compared with that of rosiglitazone. Taken together, our results showed for the first time that BDE-99 stimulated brown/beige adipocytes were aberrant in energy metabolism and endocrine, which strongly suggests that BDE-99 accumulated in human adipose tissue could interfere with brown/beige adipocytes to contribute to the occurrence of obesity and relevant metabolic disorders.


Assuntos
Adipócitos Bege , Humanos , Adipócitos Bege/metabolismo , Éteres Difenil Halogenados/metabolismo , Rosiglitazona/farmacologia , Rosiglitazona/metabolismo , Adipócitos Marrons/metabolismo , Adipocinas
14.
Food Funct ; 15(13): 6914-6928, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38855842

RESUMO

Pomegranate peel is the by-product of pomegranate processing, which contains a lot of triterpene compounds. In this study, the total triterpenes of pomegranate peel (TPP) were extracted using an ultrasonic-assisted ethanol extraction method under optimal conditions, purified using D-101 macroporous resin to obtain a purity of 75.28%. The triterpenes in TPP were mainly pentacyclic triterpenes determined by LC-MS/MS. Network pharmacological analysis predicted that the anticancer targets were closely related to the MAPK pathway. The in vitro results showed that TPP could inhibit cell proliferation, promote apoptosis, reduce mitochondrial membrane potential and increase ROS levels. The western blot results indicated that the expression levels of the apoptotic proteins Bax, Bcl-2, cytochrome C, cleaved caspase-3 and cleaved caspase-9 were increased. In addition, the protein expression of the MAPK pathway predicted by network pharmacology also changed significantly. These results provided that TPP has potential for adjuvant therapy of tumors.


Assuntos
Apoptose , Proliferação de Células , Extratos Vegetais , Punica granatum , Triterpenos , Triterpenos/farmacologia , Triterpenos/química , Triterpenos/isolamento & purificação , Humanos , Punica granatum/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Linhagem Celular Tumoral , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Frutas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem
15.
J Hazard Mater ; 476: 134949, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901256

RESUMO

Kidney injury has become an increasing concern for patients because of environmental hazards and physiological factors. However, the early diagnosis of kidney injury remains challenging. Studies have shown that oxidative stress was closely related to the occurrence and development of kidney injury, in which abnormal hydrogen peroxide (H2O2) production was a common characteristic. Consequently, monitoring H2O2 level changes is essential for the diagnosis and management of kidney injury. Herein, based on fluorescence imaging advantages, a near-infrared fluorescent probe DHX-1 was designed to detect H2O2. DHX-1 showed high sensitivity and selectivity toward H2O2, with a fast response time and excellent imaging capacity for H2O2 in living cells and zebrafish. DHX-1 could detect H2O2 in pesticide-induced HK-2 cells, revealing the main cause of kidney injury caused by pesticides. Moreover, we performed fluorescence imaging, which confirmed H2O2 fluctuation in kidney injury caused by uric acid. In addition, DHX-1 achieved rapid screening of active compounds to ameliorate pesticide-induced kidney injury. This study presents a tool and strategy for monitoring H2O2 levels that could be employed for the early diagnosis and effective management of kidney injury.

16.
Clin Transl Oncol ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598001

RESUMO

BACKGROUND: The application of immune checkpoint inhibitors (ICIs) in treating patients with extensive-stage small-cell lung cancer (ES-SCLC) has brought us new hope, but the real-world outcome is relatively lacking. Our aim was to investigate the clinical use, efficacy, and survival benefit of ICIs in ES-SCLC from real-world data analysis. METHODS: A retrospective analysis of ES-SCLC patients was conducted between 2012 and 2022. Progression-free survival (PFS) and overall survival (OS) were assessed between groups to evaluate the value of ICIs at different lines of treatment. PFS1 was defined as the duration from initial therapy to disease progression or death. PFS2 was defined as the duration from the first disease progression to the second disease progression or death. RESULTS: One hundred and eighty patients with ES-SCLC were included. We performed landmark analysis, which showed that compared to the second-line and subsequent-lines ICIs-combined therapy group (2SL-ICIs) and non-ICIs group, the first-line ICIs-combined therapy group (1L-ICIs) prolonged OS and PFS1. There was a trend toward prolonged OS in the 2SL-ICIs group than in the non-ICIs group, but the significance threshold was not met (median OS 11.94 months vs. 11.10 months, P = 0.14). A longer PFS2 was present in the 2SL-ICIs group than in the non-ICIs group (median PFS2 4.13 months vs. 2.60 months, P < 0.001). CONCLUSION: First-line ICIs plus chemotherapy should be applied in clinical practice. If patients did not use ICIs plus chemotherapy in first-line therapy, the use of ICIs in the second line or subsequent lines of treatment could prolong PFS2.

17.
J Adv Res ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609050

RESUMO

INTRODUCTION: It is estimated that 90% of hyperuricemia cases are attributed to the inability to excrete uric acid (UA). The two main organs in charge of excreting UA are the kidney (70%) and intestine (30%). Previous studies have reported that punicalagin (PU) could protect against kidney and intestinal damages, which makes it a potential candidate for alleviating hyperuricemia. However, the effects and deeper action mechanisms of PU for managing hyperuricemia are still unknown. OBJECTIVE: To investigate the effect and action mechanisms of PU for ameliorating hyperuricemia. METHODS: The effects and action mechanisms of PU on hyperuricemia were assessed using a hyperuricemia mice model. Phenotypic parameters, metabolomics analysis, and 16S rRNA sequencing were applied to explore the effect and fundamental action mechanisms inside the kidney and intestine of PU for improving hyperuricemia. RESULTS: PU administration significantly decreased elevated serum uric acid (SUA) levels in hyperuricemia mice, and effectively alleviated the kidney and intestinal damage caused by hyperuricemia. In the kidney, PU down-regulated the expression of UA resorption protein URAT1 and GLUT9, while up-regulating the expression of UA excretion protein ABCG2 and OAT1 as mediated via the activation of MAKP/NF-κB in hyperuricemia mice. Additionally, PU attenuated renal glycometabolism disorder, which contributed to improving kidney dysfunction and inflammation. Similarly, PU increased UA excretion protein expression via inhibiting MAKP/NF-κB activation in the intestine of hyperuricemia mice. Furthermore, PU restored gut microbiota dysbiosis in hyperuricemia mice. CONCLUSION: This research revealed the ameliorating impacts of PU on hyperuricemia by restoring kidney and intestine damage in hyperuricemia mice, and to be considered for the development of nutraceuticals used as UA-lowering agent.

18.
Mol Biol Cell ; 34(7): ar74, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126375

RESUMO

The kidney proximal tubule (PT) elaborates a uniquely high-capacity apical endocytic pathway to retrieve albumin and other proteins that escape the glomerular filtration barrier. Megalin and cubilin/amnionless (CUBAM) receptors engage Dab2 in these cells to mediate clathrin-dependent uptake of filtered ligands. Knockout of megalin or Dab2 profoundly inhibits apical endocytosis and is believed to atrophy the endocytic pathway. We generated CRISPR/Cas9 knockout (KO) clones lacking cubilin, megalin, or Dab2 expression in highly differentiated PT cells and determined the impact on albumin internalization and endocytic pathway function. KO of each component had different effects on the concentration dependence of albumin uptake as well its distribution within PT cells. Reduced uptake of a fluid phase marker was also observed, with megalin KO cells having the most dramatic decline. Surprisingly, protein levels and distribution of key endocytic proteins were preserved in KO PT cell lines and in megalin KO mice, despite the reduced endocytic activity. Our data highlight specific functions of megalin, cubilin, and Dab2 in apical endocytosis and demonstrate that these proteins drive endocytic flux without compromising the physical integrity of the apical endocytic pathway. Our studies suggest a novel model to explain how these components coordinate endocytic uptake in PT cells.


Assuntos
Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Receptores de Superfície Celular , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Albuminas/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Endocitose/fisiologia , Túbulos Renais Proximais/metabolismo , Camundongos Knockout , Receptores de Superfície Celular/metabolismo
19.
Shock ; 60(2): 214-220, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37477387

RESUMO

ABSTRACT: Purpose: To evaluate significant risk variables for sepsis incidence and develop a predictive model for rapid screening and diagnosis of sepsis in patients from the emergency department (ED). Methods: Sepsis-related risk variables were screened based on the PIRO (Predisposition, Insult, Response, Organ dysfunction) system. Training (n = 1,272) and external validation (n = 568) datasets were collected from Peking Union Medical College Hospital (PUMCH) and Beijing Tsinghua Changgung Hospital (BTCH), respectively. Variables were collected at the time of admission. Sepsis incidences were determined within 72 h after ED admissions. A predictive model, Early Assessment of Sepsis Engagement (EASE), was developed, and an EASE-based nomogram was generated for clinical applications. The predictive ability of EASE was evaluated and compared with the National Early Warning Score (NEWS) scoring system. In addition, internal and external validations were performed. Results: A total of 48 characteristics were identified. The EASE model, which consists of alcohol consumption, lung infection, temperature, respiration rate, heart rate, serum urea nitrogen, and white blood cell count, had an excellent predictive performance. The EASE-based nomogram showed a significantly higher area under curve (AUC) value of 86.5% (95% CI, 84.2%-88.8%) compared with the AUC value of 78.2% for the NEWS scoring system. The AUC of EASE in the external validation dataset was 72.2% (95% CI, 66.6%-77.7%). Both calibration curves of EASE in training and external validation datasets were close to the ideal model and were well-calibrated. Conclusions: The EASE model can predict and screen ED-admitted patients with sepsis. It demonstrated superior diagnostic performance and clinical application promise by external validation and in-parallel comparison with the NEWS scoring system.


Assuntos
Sepse , Humanos , Prognóstico , Curva ROC , Sepse/diagnóstico , Contagem de Leucócitos , Hospitalização , Serviço Hospitalar de Emergência , Estudos Retrospectivos
20.
Chemosphere ; 290: 133312, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34919914

RESUMO

Obesogens are defined as chemicals that trigger obesity partially by stimulating adipogenesis. Adipogenesis consists of two successive processes: the adipocyte lineage commitment of pluripotent stem cells and the differentiation of preadipocytes. Compared with the differentiation of preadipocytes, the effects of most environmental obesogens on adipocyte lineage commitment remain largely unknown. In this study, investigations are performed to explore the influences of PBDE 99 on the adipocyte lineage commitment based on C3H10T1/2, which has been widely used as a mesenchymal stem cell (MSC) model. Our results indicated that exposure to PBDE 99 during commitment stage resulted in significant up-regulation of subsequent adipogenesis in C3H10T1/2 MSCs. Interestingly, PBDE 99 did not affect the osteogenesis of C3H10T1/2 MSCs, although the adipogenesis and osteogenesis of MSCs are typically reciprocal. PBDE 99 was further demonstrated to significantly decrease the expression of Pref1, the marker of very early adipose mesenchymal precursor, and its downstream effector, Sox9. This result strongly suggested that PBDE 99 facilitated adipocyte commitment to exert adipogenic effect on C3H10T1/2 MSCs. Mechanistic studies revealed that PBDE 99 efficiently inhibited Hedgehog signaling transduction, a conserved negative regulator of the adipocyte lineage commitment. Furthermore, the effects of PBDE 99 on adipogenesis were abrogated by the co-treatment with SAG, a specific Hedgehog signaling activator, suggesting inhibition of Hedgehog signaling is responsible for the effect of PBDE 99 on adipocyte commitment. Taking together, these results strongly suggested enhanced adipocyte lineage commitment was involved in potential obesogenic effect of PBDE 99, presumably through repressing Hedgehog signalling during commitment stage. Moreover, the results of this study indicated that C3H10T1/2 can be used as a feasible MSCs cell model to evaluate the capabilities of potential obesogens on adipocyte commitment.


Assuntos
Éteres Difenil Halogenados , Células-Tronco Mesenquimais , Adipócitos , Adipogenia , Diferenciação Celular , Éteres Difenil Halogenados/toxicidade , Proteínas Hedgehog , Osteogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA