Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 270: 115917, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171104

RESUMO

Seagrass beds are susceptible to deterioration and heavy metals represent a crucial impact factor. The accumulation of heavy metal in two tropical seagrass species were studied in South China in this study and multiple methods were used to identify the heavy metal sources. E. acoroides (Enhalus acoroides) and T. hemperichii (Thalassia hemperichii) belong to the genus of Enhalus and Thalassia in the Hydrocharitaceae family, respectively. Heavy metal concentrations in the two seagrasses followed the order of Cr > Zn > Cu > Ni > As > Pb > Co > Cd based on the whole plant, and their bioconcentration factors were 31.8 ± 29.3 (Cr), 5.7 ± 1.3 (Zn), 7.0 ± 3.8 (Cu), 3.0 ± 1.9 (Ni), 1.2 ± 0.3 (As), 1.7 ± 0.9 (Pb), 9.1 ± 11.1 (Co) and 2.8 ± 0.6 (Cd), indicating the intense enrichment in Co and Cr within the two seagrasses. The two seagrasses were prone to accumulate all the listed heavy metals (except for As in E. acoroides), especially Co (BCFs of 1124) and Cr (BCFs of 2689) in the aboveground parts, and the belowground parts of both seagrasses also accumulated most metals (BCFs of 27) excluding Co and Pb. The Pb isotopic ratios (mean 208Pb/204Pb, 207Pb/204Pb and 206Pb/204Pb values of 38.2054, 15.5000 and 18.3240, respectively) and Cd isotopic compositions (δ114/110Cd values ranging from -0.09‰ to 0.58‰) within seagrasses indicated the anthropogenic sources of Pb and Cd including coal combustion, traffic emissions and agricultural activities. This study described the absorption characteristics of E. acoroides and T. hemperichii to some heavy metals, and further demonstrated the successful utilization of Pb and Cd isotopes as discerning markers to trace anthropogenic origins of heavy metals (mainly Pb and Cd) in seagrasses. Pb and Cd isotopes can mutually verify and be helpful to understand more information in pollution sources and improve the reliability of conclusion deduced from concentrations or a single isotope.


Assuntos
Hydrocharitaceae , Metais Pesados , Cádmio , Chumbo , Monitoramento Ambiental/métodos , Reprodutibilidade dos Testes , Metais Pesados/análise , China , Isótopos , Medição de Risco
2.
Sci Total Environ ; 934: 173293, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759925

RESUMO

Anthropogenic activities and natural erosion caused abundant influx of heavy metals (HMs) and organic matter (OM) into estuaries characterized by the dynamic environments governed by tidal action and river flow. Similarities and differences in the fate of HM and OM as well as the influences of OM on HMs remain incomplete in estuaries with seasonal human activity and hydrodynamic force. To address this gap, dissolved HMs (dHMs) and fluorescence dissolved OM (FDOM) were investigated in the Pearl River Estuary, a highly seasonally anthropogenic and dynamic estuary. It aimed to elucidate the effects of hydrodynamic conditions and DOM on the seasonal fate of dHMs via the multivariate statistical methods. Our findings indicated dHMs and FDOM exhibited consistently higher levels in the upper estuarine and coastal waters in both seasons, predominantly controlled by the terrestrial/anthropogenic discharge. In the wet season, dHMs and humic-like substances (HULIS) were positively correlated, showing that dHMs readily combined with HULIS. This association led to a synchronous decrease offshore along the axis of the estuary and the transport following the river plume in the surface affected by the salt wedge. Contrarily, dHMs were prone to complex with protein-like components impacted by the hydrodynamics during the dry season. Principal component analysis (PCA) results revealed the terrestrial/anthropogenic inputs and the fresh-seawater mixing process were the most crucial factors responsible for the fate of dHM in wet and dry seasons, respectively, with DOM identified as a secondary but significant influencing factor in both seasons. This study holds significance in providing valuable insights into the migration, transformation, the ultimate fate of dHMs in anthropogenically influenced estuaries, as well as the intricate dynamics governing coastal ecosystems.

3.
Sci Total Environ ; 937: 173523, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38797423

RESUMO

Seagrass meadows are globally recognized as critical natural carbon sinks, commonly known as 'blue carbon'. However, seagrass decline attributed to escalating human activities and climate change, significantly influences their carbon sequestration capacity. A key aspect in comprehending the impact of seagrass decline on carbon sequestration is understanding how degradation affects the stored blue carbon, primarily consisting of sediment organic carbon (SOC). While it is widely acknowledged that seagrass decline affects the input of organic carbon, little is known about its impact on SOC pool stability. To address this knowledge, we examined variations in total SOC and recalcitrant SOC (RSOC) at a depth of 15 cm in nine seagrass meadows located on the coast of Southern China. Our findings revealed that the ratio of RSOC to SOC (RSOC/SOC) ranged from 27 % to 91 % in the seagrass meadows, and the RSOC/SOC increased slightly with depth. Comparing different seagrass species, we observed that SOC and RSOC stocks were 1.94 and 3.19-fold higher under Halophila beccarii and Halophila ovalis meadows compared to Thalassia hemprichii and Enhalus acoroides meadows. Redundancy and correlation analyses indicated that SOC and RSOC content and stock, as well as the RSOC/SOC ratio, decreased with declining seagrass shoot density, biomass, and coverage. This implies that the loss of seagrass, caused by human activities and climate change, results in a reduction in carbon sequestration stability. Further, the RSOC decreased by 15 %, 29 %, and 40 % under unvegetated areas compared to adjacent Halophila spp., T. hemprichii and E. acoroides meadows, respectively. Given the anticipated acceleration of seagrass decline due to climate change and increasing coastal development, our study provides timely information for developing coastal carbon protection strategies. These strategies should focus on preserving seagrass and restoring damaged seagrass meadows, to maximize their carbon sequestration capacity.


Assuntos
Sequestro de Carbono , Carbono , Mudança Climática , Sedimentos Geológicos , Sedimentos Geológicos/química , China , Carbono/análise , Monitoramento Ambiental , Hydrocharitaceae , Alismatales
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA